1
|
Kamalov A, Shishov M, Smirnova N, Kodolova-Chukhontseva V, Dobrovol’skaya I, Kolbe K, Didenko A, Ivan’kova E, Yudin V, Morganti P. Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts. J Funct Biomater 2022; 13:89. [PMID: 35893457 PMCID: PMC9326723 DOI: 10.3390/jfb13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10-15 to 102 S/m with increasing graphene content (from 0 to 5.0 wt.%). The characteristics of ionic and electronic currents flowing through the matrix with the superposition of cyclic potentials ± 100 mV were studied. The high stability of the composite was established during prolonged cycling (130 h) in an electric field with a frequency of 0.016 Hz. It was established that the composite films based on polyimide and graphene have good biocompatibility and are not toxic to fibroblast cells. It was shown that preliminary electrical stimulation increases the proliferative activity of human dermal fibroblasts in comparison with intact cells. It is revealed that an electric field with a strength E = 0.02-0.04 V/m applied to the polyimide films containing 0.5-3.0 wt.% of the graphene nanoparticles activates cellular processes (adhesion, proliferation).
Collapse
Affiliation(s)
- Almaz Kamalov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Mikhail Shishov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Natalia Smirnova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vera Kodolova-Chukhontseva
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Irina Dobrovol’skaya
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Konstantin Kolbe
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Andrei Didenko
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Elena Ivan’kova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vladimir Yudin
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Pierfrancesco Morganti
- R&D Unit, Academy of History of Healthcare Art, Lungotevere in Sassia 3, 00186 Rome, Italy;
| |
Collapse
|
2
|
Ding J, Zhao H, Yu H. Bio-inspired Multifunctional Graphene-Epoxy Anticorrosion Coatings by Low-Defect Engineered Graphene. ACS NANO 2022; 16:710-720. [PMID: 34995070 DOI: 10.1021/acsnano.1c08228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although graphene has been regarded as the most ideal anticorrosion filler, to date, some vital problems including poor dispersion, disordered arrangement, structure defects, and galvanic corrosion remain unresolved,, thus blocking its potential application in metal protection. In this work, a bio-inspried multilayered graphene-epoxy composite coating was fabricated through a scalable spraying approach with well-dispersed low-defect engineered graphene as the functional filler. Polydopamine served as an enforcer to improve the dispersity and repair the structure defects of graphene (π-π interaction) and bridged the dense graphene layers and epoxy layers (strong adhesion) for forming "interlock" structures to ensure complete coating systems. Electrochemical tests confirmed that the bio-inspired composite coating showed elevated coating resistance from 4.2 × 106 Ω cm2 for blank coating and 2.5 × 108 Ω cm2 for blending composite coating to 3.0 × 109 Ω cm2. The highly anisotropic graphene layers endowed the bio-inspried coating with highly anisotropic thermal and electrical conductivities, with the in-plane and through-plane thermal conductivities being 0.78 and 0.21 W/mK, respectively. Besides, the good anisotropic conductivities make the bio-inspired coating achieve self-monitoring of structural safety and health. This bio-inspired strategy provides a fascinating method for constructing high-performance graphene composite coatings with functional properties.
Collapse
Affiliation(s)
- Jiheng Ding
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongran Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Ningbo 315201, China
| | - Haibin Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Ru K, Chen A, Jiang G, Zhang S. Facile strategy to improve thermal conductivity of anisotropic poly(butylene succinate) phosphorus‐containing ionomer films via compression molding. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ke Ru
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
| | - Anfu Chen
- School of Materials and Energy Guangdong University of Technology Guangzhou China
| | - Guo Jiang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering South China University of Technology Guangzhou China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing South China University of Technology Guangzhou China
| |
Collapse
|
4
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
5
|
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
6
|
Fluorinated Linear Copolyimide Physically Crosslinked with Novel Fluorinated Hyperbranched Polyimide Containing Large Space Volumes for Enhanced Mechanical Properties and UV-Shielding Application. Polymers (Basel) 2020; 12:polym12010088. [PMID: 31947833 PMCID: PMC7023659 DOI: 10.3390/polym12010088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022] Open
Abstract
Fluorinated hyperbranched polyimide (FHBPI), a spherical polymer with large space volumes, was developed to enhance fluorinated linear copolyimide (FPI) in terms of mechanical, UV-shielding, and hydrophobic properties via simple blend and thermal imidization methods. FPI possessed superior compatibility with FHBPI, and no obvious phase separation was found. The incorporation of FHBPI led to the formation of physical crosslinked network between FPI and FHBPI, which markedly improved the mechanical properties of the FPI, resulting in maximum enhancement of 83% in tensile strength from 71.7 Mpa of the pure FPI to 131.4 Mpa of the FPI/FHBPI composite film containing 15 wt % of FHBPI. The introduction of FHBPI also changed the surface properties of composites from hydrophilicity to hydrophobicity, which endowed them with outstanding dielectric stability. Meanwhile, the thin FPI/FHBPI composites kept the high transparency in the visible spectrum, simultaneously showing enhanced UV-shielding properties and lifetimes under intense UV ray. This was attributed to the newly formed charge transfer complex (CTC) between FHBPI and FPI. Moreover, the FPI/FHBPI composites possessed preeminent thermal properties. The properties, mentioned above, gave the composites enormous potential for use as UV-shielding coatings in an environment filled with high temperatures and strong ultraviolet rays.
Collapse
|
7
|
Surfactant-assisted fabrication of graphene frameworks endowing epoxy composites with superior thermal conductivity. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Manoj Kumar Shukla, Kamal Sharma. Effect of Carbon Nanofillers on the Mechanical and Interfacial Properties of Epoxy Based Nanocomposites: A Review. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19040096] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wang R, Chen M, Li Q, Li W, Guo Y, Liu L. Enhanced Mechanical and Thermal Properties of Polyimide Films Based on Functional Groups-Free Few-Layer Graphene. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rubing Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
| | - Mingliang Chen
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
| | - Qi Li
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
| | - Weiwei Li
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- SZGraphene Nanotechnology Co., Ltd
| | - Yufen Guo
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- SZGraphene Nanotechnology Co., Ltd
| | - Liwei Liu
- Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- SZGraphene Nanotechnology Co., Ltd
| |
Collapse
|
10
|
Preparation, Structure, and Properties of Surface Modified Graphene/Epoxy Resin Composites for Potential Application in Conductive Ink. COATINGS 2018. [DOI: 10.3390/coatings8110387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dispersity of graphene (GE) in the matrix has an important influence on the thermal, mechanical, and electrical properties of its derived composites. In this paper, surface modification with a silane coupling agent and a double injection method were used to improve the dispersity of GE in epoxy resin (EP). The thermal, mechanical, and electrical properties of modified graphene/epoxy resin composites (modified GE/EP) were investigated by the thermogravimetric analysis, a four-probe method, and the tensile and bending strength. The results reveal that these properties of the composites can be improved significantly by using the modified GE as the filler. The surface of the modified GE/EP composite was smooth when the curing temperature was 75 °C. The weight loss of the modified GE/EP composite was lower than that of pure EP. The tensile and bending strength of modified GE/EP-0.07 (0.07 wt % modified GE) reached 74.65 and 106.21 MPa, respectively. In addition, the resistivity of modified GE/EP-0.1 (0.1 wt % modified GE) decreased to 52 Ω·cm, which was lower than that of CB/EP-1 (1 wt % carbon black, 95 Ω·cm) and Ag/EP-50 (50 wt % Ag particles, 102 Ω·cm). It is worth noting that the percolation threshold of the modified GE/EP composites was 0.025 vol % modified GE. These results show that the modified GE/EP composites have a potential application in conductive ink when the modified GE is used as the conductive filler.
Collapse
|
11
|
Chou TY, Tsai HY, Hsu CH, Yip MC. Fabrication and characteristics of graphene-reinforced silver nanowire/polybenzoxazine/epoxy copolymer composite thin films. POLYM INT 2018. [DOI: 10.1002/pi.5614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tsung-Yu Chou
- Power Mechanical Engineering; National Tsing Hua University; Hsinchu Taiwan
| | - Hung-Yin Tsai
- Power Mechanical Engineering; National Tsing Hua University; Hsinchu Taiwan
| | - Chen-Hao Hsu
- Power Mechanical Engineering; National Tsing Hua University; Hsinchu Taiwan
| | - Ming-Chuen Yip
- Institute of Applied Physics and Materials Engineering; University of Macau; Macau China
| |
Collapse
|
12
|
Jin SY, Du WW, Benkhenafou F, Douadji L. Investigation of the Mechanical and Thermal Properties of LFR PA66 with Graphene Coating on Fibre Surface. INT POLYM PROC 2018. [DOI: 10.3139/217.3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
An industrial fibreglass winding process is employed to apply graphene based sizing (0.2 wt% graphene concentration) on fibreglass surface. Both SEM and Raman spectroscopy characterization have proved that the coating of graphene on fibreglass surface is homogeneous and that the roughness of the fibreglass surface was improved. Long fiberglass-graphene reinforced PA66 pellets are successfully prepared through a pultrusion process. LGF-graphene-PA66 composites are produced following an injection molding process. Thermal conductivity was found to increase from 0.23 W/m · K−1 to 0.67 W/m · K−1 when compared with samples without graphene coating. The tensile strength of LGF-graphene-PA66 is 196 MPa while that of LGF-PA66 is 173 MPa. Tensile modulus is also found to increase to 13.5 GPa from 10.6 GPa after graphene coating. This new graphene coating process is a good method to produce high performance composites.
Collapse
Affiliation(s)
- S.-Y. Jin
- Luojiang Jinhua Fibreglass , Deyang City, Sichuan Province , PRC
| | - W.-W. Du
- College of Material Science and Engineering , Southwest University, Chongqing , PRC
| | - F. Benkhenafou
- Department of Physical , University of Tlemcen, Tlemcen , Algeria
| | - L. Douadji
- Chongqing Institute of Green and Intelligent Technology , Chinese Academy of Sciences, Chongqing , PRC
| |
Collapse
|
13
|
Effect of oxygen functionalities of graphene oxide on polymerization and thermal properties of reactive benzoxazine nanocomposites. Macromol Res 2017. [DOI: 10.1007/s13233-018-6009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|