1
|
Atz Dick T, Uludağ H. A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Mol Pharm 2022; 19:2077-2091. [PMID: 35649175 DOI: 10.1021/acs.molpharmaceut.1c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mineralization by exposure of organic templates to supersaturated solutions is used by many living organisms to generate specialized materials to perform structural or protective functions. Similarly, it was suggested that improved robustness acquired through mineralization under natural conditions could be an important factor for virus survival outside of a host for better transfection of cells. Here, inspired by this fact, we developed a nonviral tricomponent polyplex system for gene delivery capable of undergoing mineralization. First, we fabricated anionic polyplexes carrying pDNA by self-assembly with a lipid-modified cationic polymer and coating by poly(aspartic acid). Then, we submitted the polyplexes to a two-step mineralization reaction to precipitate CaCO3 under various supersaturations. We carried out detailed morphological studies of the mineralized polyplexes and identified which parameters of the fabrication process were influential on transfection efficiency. We found that mineralization with CaCO3 is efficient in promoting transfection efficiency as long as a certain Ca2+/CO32- lower limit ratio is respected. However, calcium incubation can also be used to achieve similar effects at higher concentrations depending on polyplex composition, probably due to the formation of physical cross-links by calcium binding to poly(aspartic acid). We proposed that the improved robustness and transfection efficiency provided by means of mineralization can be used to expand the possible applications of polyplexes in gene therapy.
Collapse
Affiliation(s)
- Teo Atz Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
2
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
3
|
Fu J, Leo CP, Show PL. Recent advances in the synthesis and applications of pH-responsive CaCO3. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Nam HY, Min KH, Kim DE, Choi JR, Lee HJ, Lee SC. Mussel-inspired poly(L-DOPA)-templated mineralization for calcium phosphate-assembled intracellular nanocarriers. Colloids Surf B Biointerfaces 2017; 157:215-222. [PMID: 28599182 DOI: 10.1016/j.colsurfb.2017.05.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/02/2023]
Abstract
We developed a calcium phosphate (CaP)-assembled polymer nanocarrier for intracellular doxorubicin (DOX) delivery based on a mussel-inspired mineralization approach. A DOX-loaded core-shell polymer nanoparticle (DOX-NP) consisting of a poly(3,4-dihydroxy-l-phenylalanine) (PDOPA) core and a poly (ethylene glycol) (PEG) shell was utilized as a nanotemplate for CaP mineralization. The mean hydrodynamic diameter of the DOX-loaded CaP-mineralized polymer nanoparticles (DOX-CaP-NPs) was 154.3nm. Energy-dispersive X-ray spectroscopy confirmed that the DOX-CaP-NPs contained substantial amounts of Ca and P, elements found only in the CaP mineral. The loading efficiency and content of DOX, estimated by fluorescence spectroscopy, were 54.0% and 10.8wt%, respectively. The CaP deposited in the PDOPA core domain enabled the DOX-CaP-NPs to maintain a robust structure and effectively inhibit DOX release at extracellular pH, whereas at endosomal pH, the CaP core dissolved to trigger a facilitated DOX release. The DOX-CaP-NPs may serve as robust nanocarriers with a high delivery efficacy for cancer chemotherapy.
Collapse
Affiliation(s)
- Hye Young Nam
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Kyung Hyun Min
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Da Eun Kim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jeong Ryul Choi
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hong Jae Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
6
|
Deng B, Xia M, Qian J, Li R, Li L, Shen J, Li G, Xie Y. Calcium Phosphate-Reinforced Reduction-Sensitive Hyaluronic Acid Micelles for Delivering Paclitaxel in Cancer Therapy. Mol Pharm 2017; 14:1938-1949. [DOI: 10.1021/acs.molpharmaceut.7b00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bing Deng
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxin Xia
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin Qian
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Li
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lujia Li
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Pharmacy
Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jianliang Shen
- Department
of Nanomedicine, Houston Methodist Research Institute, Houston 77030, United States
| | - Guowen Li
- Pharmacy
Department, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan Xie
- Research
Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Formulation of a Sustained Release Docetaxel Loaded Cockle Shell-Derived Calcium Carbonate Nanoparticles against Breast Cancer. Pharm Res 2017; 34:1193-1203. [DOI: 10.1007/s11095-017-2135-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
|
8
|
Development and characterization of polyethylenimine nanocarriers processed by an inductive thermospraying technique. Macromol Res 2016. [DOI: 10.1007/s13233-016-4085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kim M, Lee JH, Kim SE, Kang SS, Tae G. Nanosized Ultrasound Enhanced-Contrast Agent for in Vivo Tumor Imaging via Intravenous Injection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8409-8418. [PMID: 27010717 DOI: 10.1021/acsami.6b02115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To enhance the detection limit of ultrasound (US) imaging, ultrasound enhanced-contrast agents (UECAs) that can go preferentially to the target tissue such as a tumor and amplify the US signal have been developed. However, nanosized UECAs among various UECAs developed are very limited to clearly demonstrate proper ability for selective tumor detection by US imaging upon their intravenous injection. In this study, we prepared CaCO3 nanoparticles that were formed inside a flexible and biocompatible pluronic-based nanocarrier. This nanosized UECA was stable in serum-containing media and generated CO2, more preferentially at low pH; thus, it could be detected by US imaging. After intravenous injection into tumor-bearing mice, this nanosized UECA showed a significant US contrast enhancement at the tumor site in 1 h, in contrast to no change in the liver, followed by a rapid clearance from the body in 24 h. Therefore, the present nanosized UECA could be applied as an effective diagnostic modality for in vivo tumor imaging by ultrasonography.
Collapse
Affiliation(s)
- Manse Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
| | - Jong Hyun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
| | - Se Eun Kim
- College of Veterinary Medicine, Chonnam National University , Gwangju 61186, Republic of Korea
| | - Seong Soo Kang
- College of Veterinary Medicine, Chonnam National University , Gwangju 61186, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, KIST , Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Kim B, Gwon K, Lee S, Kim YH, Yoon MH, Tae G. Heparin-immobilized gold-assisted controlled release of growth factors via electrochemical modulation. RSC Adv 2016. [DOI: 10.1039/c6ra18908c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrochemically-controlled release of bFGF using heparin-immobilized gold via different types of mechanisms (desorption of thiols from gold and modulation of specific interaction between heparin and bFGF) and its biocompatibility.
Collapse
Affiliation(s)
- Boyoung Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| | - Kihak Gwon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| | - Seyeong Lee
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| | - Young Ha Kim
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| | - Giyoong Tae
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Korea
| |
Collapse
|