1
|
Barlybayeva A, Myrzakhmetov B, Wang Y, Mentbayeva A. Deep eutectic solvent-supported poly(vinyl) alcohol electrospun anion-exchange membrane for potential application in alkaline fuel cells. Sci Rep 2024; 14:25603. [PMID: 39463389 PMCID: PMC11514189 DOI: 10.1038/s41598-024-77309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This research introduces a new method to synthesize poly(vinyl) alcohol (PVA)-based deep eutectic solvent (DES)-supported anion-exchange membranes (AEMs) for alkaline fuel cell (AFC) applications. The fabrication method involved the modification of a PVA-based crosslinked nanofiber mat with DES prepared by mixing choline chloride (ChCl) and ethylene glycol (EG) in a 1:3 molar ratio. Various concentrations of glutaraldehyde (GA) solution were used to cross-link of the PVA fibers. The composite AEM developed using DES was designated as DES3@PVA4 and showed improved performance with a high hydroxide conductivity of 1.05 mS/cm at 60 °C, which is higher than that of the unmodified AEM (0.77 ± 0.01 mS/cm at 60 °C). The absence of swelling, enhanced elongation at break, and improved alkaline stability were further confirmed for the DES-modified AEM; the ionic conductivity remained stable after one month of soaking in 1 M potassium hydroxide solution. These results demonstrate that DES-enhanced PVA-based AEMs can be used for AFCs with improved conductivity, flexibility, mechanical strength, and alkaline stability compared to conventional AEMs.
Collapse
Affiliation(s)
- Aida Barlybayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Bauyrzhan Myrzakhmetov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Yanwei Wang
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
A Water-Soluble Epoxy-Based Green Crosslinking System for Stabilizing PVA Nanofibers. Molecules 2022; 27:molecules27134177. [PMID: 35807420 PMCID: PMC9267985 DOI: 10.3390/molecules27134177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
With the ever-growing concern about environmental conservation, green production and water-based nanofibers have attracted more and more interest from both academic and industrial fields; nevertheless, the stabilization process of water-based nanofibers is primarily relying on the application of organic solvent-based crosslinking agents. In this work, we develop a green approach to fabricate water-resistant polyvinyl alcohol (PVA) nanofibers by using a water-based epoxy compound, N1, N6-bis(oxiran-2-ylmethyl) hexane-1,6-diamine (EH), as the crosslinker. This EH/sodium carbonate/sodium bicarbonate (CBS) solution system can break down large aggregates of PVA molecules into small ones and promote the uniform distribution of EH in the solution, resulting in the improved stability of crosslinked PVA nanofibers. We firstly report that the uniform dispersion of crosslinking agents in the electrospinning solution plays a vital role in improving the stability of spinning solutions and the water resistance of crosslinked PVA nanofibers by comparing crosslinking performances between water-based epoxy and conventional water-based blocked isocyanate (BI). This work could open up a novel strategy and green approach for the stabilization of water-based nanofibers.
Collapse
|
3
|
Das G, Choi JH, Nguyen PKT, Kim DJ, Yoon YS. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers (Basel) 2022; 14:1197. [PMID: 35335528 PMCID: PMC8955432 DOI: 10.3390/polym14061197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The fuel cell industry is the most promising industry in terms of the advancement of clean and safe technologies for sustainable energy generation. The polymer electrolyte membrane fuel cell is divided into two parts: anion exchange membrane fuel cells (AEMFCs) and proton exchange membrane fuel cells (PEMFCs). In the case of PEMFCs, high-power density was secured and research and development for commercialization have made significant progress. However, there are technical limitations and high-cost issues for the use of precious metal catalysts including Pt, the durability of catalysts, bipolar plates, and membranes, and the use of hydrogen to ensure system stability. On the contrary, AEMFCs have been used as low-platinum or non-platinum catalysts and have a low activation energy of oxygen reduction reaction, so many studies have been conducted to find alternatives to overcome the problems of PEMFCs in the last decade. At the core of ensuring the power density of AEMFCs is the anion exchange membrane (AEM) which is less durable and less conductive than the cation exchange membrane. AEMFCs are a promising technology that can solve the high-cost problem of PEMFCs that have reached technological saturation and overcome technical limitations. This review focuses on the various aspects of AEMs for AEMFCs application.
Collapse
Affiliation(s)
- Gautam Das
- Department of Polymer Science and Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea;
| | - Ji-Hyeok Choi
- Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Korea;
| | - Dong-Joo Kim
- Materials Research and Education Center, Auburn University, 275 Wilmore Labs, Auburn, AL 36849, USA
| | - Young Soo Yoon
- Department of Materials Science and Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| |
Collapse
|
4
|
Esterification modification and characterization of polyvinyl alcohol anion exchange membrane for direct methanol fuel cell. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02958-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Choudhury RR, Gohil JM, Dutta K. Poly(vinyl alcohol)‐based membranes for fuel cell and water treatment applications: A review on recent advancements. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rikarani R. Choudhury
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
| | - Jaydevsinh M. Gohil
- School for Advanced Research in Petrochemicals—Laboratory for Advanced Research in Polymeric Materials (SARP: LARPM) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bhubaneswar India
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| | - Kingshuk Dutta
- School for Advanced Research in Petrochemicals—Advanced Polymer Design & Development Research Laboratory (SARP: APDDRL) Central Institute of Petrochemicals Engineering & Technology (CIPET) Bengaluru India
| |
Collapse
|
6
|
Zhu J, Gao W, Wang B, Kang X, Liu P, Cui B, Abd El-Aty AM. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO 2. Int J Biol Macromol 2021; 183:1371-1378. [PMID: 34019919 DOI: 10.1016/j.ijbiomac.2021.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
The effects of nano-ZnO and nano-SiO2 nanoparticles on the properties of starch-based films prepared by extrusion blowing were investigated in this study. New hydrogen bonds between hydroxypropyl starch (HS) and nanoparticles during the extrusion process were formed as shown by Fourier transform infrared spectroscopy (FTIR). The diffraction patterns of nanocomposite films reinforced with nano-ZnO were similar to those of nano-ZnO, except that the peak intensity decreased, whereas, the addition of SiO2 nanoparticles decreased the intensity of the main characteristic peaks, regardless of the HS and nano-ZnO reinforced films. The thermal stability, tensile strength, moisture barrier property, and surface hydrophobicity of nanocomposite films were improved with the incorporation of nano-ZnO and nano-SiO2, the finding that could be attributed to a strong interplay between nano-ZnO, nano-SiO2, and the starch matrix during the extrusion film blowing process. Similarly, the nano-ZnO/nano-SiO2 composite-reinforced films showed smooth, flat, and uniform appearances by scanning electron microscopy (SEM) and atomic force microscope (AFM) tests. In sum, Nano-ZnO and nano-SiO2 nanoparticles can be used as composite reinforcing agents for preparation of starch-based films through extrusion blowing.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Zhao Y, Sun H, Yang B, Fan B, Zhang H, Weng Y. Enhancement of Mechanical and Barrier Property of Hemicellulose Film via Crosslinking with Sodium Trimetaphosphate. Polymers (Basel) 2021; 13:927. [PMID: 33802938 PMCID: PMC8002615 DOI: 10.3390/polym13060927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m-2 × d-1 × kPa-1 and 2.85 × 10-10 × g × m-1 × s-1 × Pa-1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.
Collapse
Affiliation(s)
- Yuelong Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Baomin Fan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Huijuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (B.F.); (H.Z.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films. Int J Biol Macromol 2019; 132:978-986. [DOI: 10.1016/j.ijbiomac.2019.03.088] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
|
9
|
Research of the synthesis and film performance of silica/poly(St-BA-MPS) core-shell latexes obtained by miniemulsion co-polymerization. Macromol Res 2017. [DOI: 10.1007/s13233-017-5054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zhu H, Li R, Chen N, Wang F, Wang Z, Han K. Electrorheological effect induced quaternized poly(2,6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra14177c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The electrorheological effect was employed to arrange LDHs to the through-plane direction and then improve the through-plane conductivities of AEMs.
Collapse
Affiliation(s)
- Hong Zhu
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Rui Li
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Nanjun Chen
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Zhongming Wang
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| | - Kefei Han
- State Key Laboratory of Chemical Resource Chemistry Engineering
- Institute of Modern Catalysis
- Department of Organic Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
11
|
Shi B, Li Y, Zhang H, Wu W, Ding R, Dang J, Wang J. Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|