Sun G, Huang Y, Li D, Fan Q, Xu J, Shao J. Blue Light Induced Photopolymerization and Cross-Linking Kinetics of Poly(acrylamide) Hydrogels.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020;
36:11676-11684. [PMID:
32969661 DOI:
10.1021/acs.langmuir.0c02560]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blue light induced photopolymerization and photo-cross-linking kinetics of acrylamide (AM), with camphorquinone/diphenyl iodonium hexafluorophosphate (CQ/DPI) as photoinitiators, were investigated. The effects of a number of parameters, including mass fraction of CQ, DPI, and AM (wCQ, wDPI, and wAM) and light intensity (I), on photopolymerization efficiency and photogelation process were systematically studied by photo-differential scanning calorimetry (DSC) and photo-rheometry. Photo-DSC indicated that the maximum photopolymerization rate (Rp, max) was proportional to wCQ0.5, wDPI0.5, I0.5, and wAM, while Photo-Rheometry showed linear relationships between gel time tgel and wCQ and I, respectively, and power law relationships between tgel and wDPI and wAM, respectively. In addition, both peak cross-linking rate Rc,max, and delay time td, which were both linearly proportional to wCQ0.5, wDPI0.5, and I0.5, showed power law relationships with wAM. Furthermore, exponential patterns were observed between all these factors, wCQ, wDPI, wAM, and I and plateau modulus G'∞. Combining such correlations obtained from experimental data, an empirical model was established describing the projected mechanical properties of poly(acrylamide) hydrogels from blue light initiated photopolymerization and photo-cross-linking.
Collapse