1
|
Hernandez-Tenorio F, Saez AA, Palacio DA, Galeano E, Marin-Palacio LD, Giraldo-Estrada C. Formulations based on pullulan and a derivative as coating material for the food sector. Carbohydr Polym 2024; 342:122393. [PMID: 39048197 DOI: 10.1016/j.carbpol.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Carboxymethylated derivatives of pullulan (PU) were synthesized and evaluated as coating for the postharvest preservation of blueberries. Carboxymethylpullulan was obtained by etherification reaction with the substitution degrees of 0.52, 0.34, and 0.26 for CMP1, CMP2, and CMP3 respectively. Infrared spectroscopy and nuclear magnetic resonance results showed characteristic signals of the carbonyl group belonging to the carboxymethyl group. Thermal analysis showed that CMP1, CMP2, and CMP3 derivatives presented thermal stability values of 209.91 C, 214.73 C, and 225.52 °C, respectively, and were lower with respect to PU with Td of 238.84 °C. Furthermore, an increase in the glass transition temperature due to carboxymethylation was determined. The chemical modification decreased the contact angle with respect to PU (71.34°) with values for CMP1, CMP2, and CMP3 of 39.89°, 53.72° and 60.61°, respectively. The carboxymethylation also increased the water vapor permeability and mechanical properties of the films. In addition, it was found that the CMP molecules affected the optical properties. The application of CMP-based coatings reduced the mass loss and ripening rate of blueberries compared to native pullulan, therefore, packaging from CMP molecules could be used as a coating capable of delaying ripening and extending the shelf life of fruits.
Collapse
Affiliation(s)
- Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Alex A Saez
- Biological Sciences and Bioprocesses Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 0500100, Colombia
| | - Luz D Marin-Palacio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia
| | - Catalina Giraldo-Estrada
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia.
| |
Collapse
|
2
|
Vieira WT, Nicolini MVS, da Silva MGC, Nascimento LDO, Vieira MGA. κ-Carrageenan/sericin polymer matrix modified with different crosslinking agents and thermal crosslinking: Improved release profile of mefenamic acid. Int J Biol Macromol 2024; 262:129823. [PMID: 38296146 DOI: 10.1016/j.ijbiomac.2024.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
The crosslinking of the polymer matrix with compatible macromolecules results in a three-dimensional network structure that offers an enhancement in the controlled release properties of the material. In this sense, this work aimed to improve the release profile of mefenamic acid (MAC) through crosslinking strategies. κ-Carrageenan/sericin crosslinked blend was obtained by covalent and thermal crosslinking and the different formulations were characterized. The gastroresistant potential and release profile were evaluated in the dissolution assay. The effect and characterization of the particles were investigated. Multiple units presented high entrapment efficiency (94.11-104.25), high drug loading (36.50-47.50 %) and adequate particle size (1.34-1.57 mm) with rough surface and visually spherical shape. The Weibull model showed that drug release occurred by relaxation, erosion and Fickian diffusion. Material stability and absence of MAC -polymer interactions were demonstrated by FTIR and thermogravimetric analysis. DSC showed a stable character of MAC in the drug-loaded beads. Moreover, the application studies of κ-Car/Ser/carboxymethylcellulose in the in vitro intestine mode showed that the crosslinked blend increased cell viability (>85 %), while free MAC exhibited a cytotoxic effect. Finally, the crosslinked k-Car/Ser blend MAC -loaded showed promising properties of a sustained release form of anti-inflammatory drug.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Maria Vitória Silva Nicolini
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av. 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
3
|
Jaramillo-Quiceno N, Rueda-Mira S, Marín JFS, Álvarez-López C. Development of a novel silk sericin-based hydrogel film by mixture design. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractSericin has been used in functional and potentially biodegradable materials for cosmetics, biomedical, agricultural, and food applications. It is a natural polymer with applications in absorbent materials, such as hydrogels, because of its hydrophilic character. However, sericin by itself is brittle, and in contact with water has low structural stability, being necessary its blending with other polymers or the application of crosslinking processes. In this work, hydrogel films were prepared from different mixtures containing sericin (SS), carboxymethylcellulose (CMC), and polyvinyl alcohol (PVA), using a simple and environmentally friendly method consisting of a gelling process followed by solvent casting. A mixture design was applied to assess the incidence of each component and its interaction with the output variables of interest. Two response variables were evaluated in each formulation: water absorption capacity (WA) and gel fraction (GF). It was also possible to model the output variables based on the proportions of the sample components. In addition, a set of formulations were used to produce hydrogels with high water absorption rates while maintaining their structural stability. The optimal hydrogel formulation (HF) was structurally and thermally characterized by FTIR and TGA, respectively. Hydrogel morphology was also studied by scanning electron microscopy (SEM). The results of this study constitute an important contribution to the design of novel processing routes to extend the use of silk sericin in the development of new materials.
Collapse
|
4
|
Boonpavanitchakul K, Kangwansupamonkon W, Pimpha N, Magaraphan R. Influence of
sericin‐g‐PLA
as an organic nucleating agent for preparing biodegradable blend films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center National Science and Technology Development Agency Klong Luang Pathumthani Thailand
- Academy of Sciences The Royal Society of Thailand Bangkok Thailand
| | - Nuttaporn Pimpha
- National Nanotechnology Center National Science and Technology Development Agency Klong Luang Pathumthani Thailand
| | - Rathanawan Magaraphan
- The Petroleum and Petrochemical College Chulalongkorn University Bangkok Thailand
- Polymer Processing and Polymer Nanomaterials Research Unit Chulalongkorn University Bangkok Thailand
- Green Materials for Industrial Application Research Unit, Faculty of Science Chulalongkorn University Bangkok Thailand
| |
Collapse
|
5
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
6
|
Li H, Zhang X, Zheng H, Fan Y, Cheng T, Liu C. Identification and location of sericin in silkworm with anti-sericin antibodies. Int J Biol Macromol 2021; 184:522-529. [PMID: 34119553 DOI: 10.1016/j.ijbiomac.2021.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Sericin, as the main component of silkworm cocoon silk, surrounds and protects the silk fibroin. Sericin is a natural macromolecular protein complex encoded by the genes Ser1, Ser2, and Ser3. At present, there are no available antibodies against sericin that may be used to identify and locate it at the protein level, hindering the study of its secretion mechanism and materials application. Therefore, the development of effective antibodies against sericin is an urgent necessity. To address this problem, we prepared polyclonal antibodies against the Ser1, Ser2 and Ser3 proteins using synthesized peptides for the first time. The specificity of the antibodies was confirmed using dot blot, immunoblotting and mass spectrometry on the hybrid bands of the middle silk gland. The immunoblotting results of anti-sericin antibodies showed that sericin has different molecular weights in different regions of the middle silk gland and strains in the 5th instar. Through immunohistochemistry, anti-sericin antibodies revealed that sericin presented different distributions in the anterior part of the middle silk gland of 872 strain at the 7th day of 5th instar. In addition, the prepared antibodies not only detected intact sericin molecules, but also detected degraded sericin that was dissolved in five different solvents. In summary, this work prepared effective sericin antibodies for silk protein synthesis and secretion research and provides a possible molecular detection method for biological products containing silkworm sericin.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xuan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongsheng Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yinfeng Fan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
|
8
|
Boonpavanitchakul K, Pimpha N, Kangwansupamonkon W, Magaraphan R. Processing and antibacterial application of biodegradable sponge nano-composite materials of silver nanoparticles and silk sericin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Preparation and characterization of dopamine–sodium carboxymethyl cellulose hydrogel. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0605-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Orlando I, Roy I. Cellulose-Based Hydrogels for Wound Healing. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Anticancer drug carriers using dicalcium phosphate/dextran/CMCnanocomposite scaffolds. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Sheng X, Li X, Li M, Zhang R, Deng S, Yang W, Chang G, Ye X. An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction. Aust J Chem 2018. [DOI: 10.1071/ch17214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of injectable hydrogels was prepared by cross-linking oxidized carboxymethyl cellulose (oxi-CMC) with polyacryloyl hydrazide (PAH) via a Schiff base reaction under physiological conditions. The hydrogels exhibited superior performance such as appropriate rheology properties, high swelling ratio, and low degradation rate. In phosphate buffer solution (PBS, pH 7.4) at 37°C, the swelling ratio of the hydrogels ranged from 19 to 28 after 7 h, the degradation percentage of the oxi-CMC6/PAH3 hydrogel was ~47 % after 20 days. Using bovine serum albumin (BSA) as a model protein drug, the results of in vitro drug release studies demonstrated that the sustained release of BSA could be cooperatively controlled through drug diffusion and hydrogel degradation in PBS (pH 7.4) at 37°C, and the cumulative release percentage of BSA from a drug-loaded oxi-CMC6/PAH3 hydrogel was ~88 % after 8 days. The results signified that oxi-CMC6/PAH3 hydrogel could be potentially applied in the fields of drug delivery vehicles, tissue engineering, and cell encapsulation materials.
Collapse
|
13
|
Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One 2017; 12:e0172727. [PMID: 28245257 PMCID: PMC5330485 DOI: 10.1371/journal.pone.0172727] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems.
Collapse
|
14
|
Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm Sericin: Properties and Biomedical Applications. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8175701. [PMID: 27965981 PMCID: PMC5124675 DOI: 10.1155/2016/8175701] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/05/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Silk sericin is a natural polymer produced by silkworm, Bombyx mori, which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.
Collapse
Affiliation(s)
- Regina Inês Kunz
- Department of Morphological Sciences, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Rose Meire Costa Brancalhão
- Center of Biological Sciences and Health, State University of Western Paraná, Rua Universitária, 2069, 85819-110 Cascavel, PR, Brazil
| | - Lucinéia de Fátima Chasko Ribeiro
- Center of Biological Sciences and Health, State University of Western Paraná, Rua Universitária, 2069, 85819-110 Cascavel, PR, Brazil
| | - Maria Raquel Marçal Natali
- Department of Morphological Sciences, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
15
|
Shen Y, Li X, Huang Y, Chang G, Cao K, Yang J, Zhang R, Sheng X, Ye X. pH and redox dual stimuli-responsive injectable hydrogels based on carboxymethyl cellulose derivatives. Macromol Res 2016. [DOI: 10.1007/s13233-016-4077-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|