1
|
Chen P, Ze R, Xia X, Zhang Z, Lu K, Wei L, Zhou B. Composite porphyrin-based conjugated microporous polymer/graphene oxide capable of photo-triggered combinational antibacterial therapy and wound healing. BIOMATERIALS ADVANCES 2023; 154:213662. [PMID: 37862813 DOI: 10.1016/j.bioadv.2023.213662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Developing antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent. GO-TAPP, prepared via the self-oxidation coupling of tetraethynyl porphyrin on the surface of graphene oxide, could exert synergistic photothermal (PTT, ascribed to the graphene) and photodynamic (PDT, derived from the Porphyrin polymer) antimicrobial effectiveness. Both the in vivo and in vitro experiments have confirmed GO-TAPP are extremely potent against the Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) pathogens, which presents a remarkably enhanced sterilizing effect in comparison with its counterparts (the bare GO, and TAPP). Meanwhile, the synergistic effect of GO-TAPP could significantly accelerate the healing of open wound infected by bacterial. Altogether, this work proposed a new approach for the rational preparation of highly biocompatible graphene-based composite materials as antibiotic-free agents with synergistic antibacterial effect to combat bacterial infections.
Collapse
Affiliation(s)
- Peilei Chen
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Runsong Ze
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Xiaohui Xia
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Zifan Zhang
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Keliang Lu
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China.
| | - Liuya Wei
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| | - Baolong Zhou
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| |
Collapse
|
2
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
3
|
Cetin A, Korkmaz A, Bildirici I. A novel oligo-pyrazole-based thin film: synthesis, characterization, optical and morphological properties. Colloid Polym Sci 2018; 296:1249-1257. [PMID: 29983478 PMCID: PMC6006238 DOI: 10.1007/s00396-018-4342-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
Abstract
Pyrazole-3,4-dicarboxylic acid 2 was synthesized via the hydrolysis of pyrazole-3-carboxylic acid 1 and subsequently heated with thionyl chloride to give the novel pyrazole-3,4-dicarbonyl dichloride 3, which was easily converted into oligo-pyrazole 4 upon its reaction with p-phenylene-diamine. These newly synthesized compounds were characterized by 1H-NMR, 13C-NMR, and FT-IR spectroscopy, and gel permission chromatography (GPC). Three novel oligo-pyrazole thin films were prepared using oligo-pyrazole 4 with these respective values of thickness: 20, 21, and 24 μm. The optical properties of the films, including the absorbance, transmittance, and optical band gap, were determined using UV-vis spectroscopy. The Eg values of the films were found to be 1.426, 1.537, and 1.648 eV for the 20, 21, and 24 μm thick organic films, respectively. Atomic force microscopy (AFM) was used to examine the surface morphology and properties of the organic films. In the AFM images, a few black regions were observed and several yellow regions appeared over a large area, and the surface of the oligo-pyrazole films had an extremely low roughness value. The as-synthesized oligo-pyrazole has great potential in optoelectronic applications according to the optical properties of the as-prepared films. Graphical abstract.
Collapse
Affiliation(s)
- Adnan Cetin
- Faculty of Education, Department of Science, Muş Alparslan University, Muş, Turkey
| | - Adem Korkmaz
- School of Health, Muş Alparslan University, Muş, Turkey
| | - Ishak Bildirici
- Faculty of Pharmacy Department of Pharmaceutical Chemistry, Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
4
|
Li D, Liu T, Yu X, Wu D, Su Z. Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application. Polym Chem 2017. [DOI: 10.1039/c7py00935f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this review, we demonstrated the recent advances in the fabrication strategies of graphene–biomacromolecule hybrid materials and their applications in the field of tissue engineering, such as implant materials, cell culture scaffolds, and regenerative medicine.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| | - Di Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites
- Beijing University of Chemical Technology
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- 100029 Beijing
- China
- Beijing Key Laboratory of Advanced Functional Polymer Composites
| |
Collapse
|