1
|
Kang N, Yang S, Xiong X, Han A, Ren R, Wang J. The Performance and Synthesis of Alkynyl-Functionalized Benzoxazine Containing Phthalide Side Groups and Cyano Groups with Different Molecular Weights. Polymers (Basel) 2023; 15:3478. [PMID: 37631535 PMCID: PMC10459290 DOI: 10.3390/polym15163478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Benzoxazine resins are widely employed in a variety of applications due to their exceptional heat resistance and treatment properties. However, traditional benzoxazine resins still confront hurdles in today's engineering applications, such as their inability to provide long-term service in high-temperature settings and their inadequate toughness. In this study, four alkyne-functionalized benzoxazines with phthalide side groups and cyano groups of varying molecular weights were produced. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H-NMR) were used to characterize the resin structure, and differential scanning calorimetry (DSC) was used to investigate the thermal curing kinetics at different warming rates. The apparent activation energy was 116.9 kJ/mol. In-situ FT-IR was used to investigate the cure mechanism. Dynamic mechanical analysis (DMA) was used to evaluate the gelation time of BOZ series resins at various temperatures, and the curing process was designed by combining the results with DSC. The Tg of the composites made using BOZ-1N21 as the matrix was 336 °C, which was much higher than the Tg of the BP-a resin made with aniline, phenolphthalein, and formaldehyde (Tg = 251 °C). As a result, the resin system is expected to be employed in applications requiring high-temperature resistance and toughness.
Collapse
Affiliation(s)
- Nianjun Kang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
| | - Shuai Yang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Xuhai Xiong
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Anchang Han
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Rong Ren
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Jing Wang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
2
|
Liu Y, Yuan L, Liang G, Gu A. Developing intrinsic halogen-free and phosphorus-free flame retardant biobased benzoxazine resins with superior thermal stability and high strength. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Xie H, He X, Pu Y, Lv J, Chen M, Zeng K, Yang G. Synthesis of oligomeric phthalonitrile resins containing imide units and study of the methylene-cyano thermal synergistic polymerization effect. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083211073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The meta- and para-catenated methylene-containing phthalonitrile oligomers were prepared from the reaction of an excess amount of 4,4′-(4,4′-isopropylidenediphenoxy) bis-(phthalic anhydride) (BPADA) with 4,4′-Methylenedianiline (MDA) in a N, N-dimethylformamide/ toluene solvent mixture, followed by end-capping agent with 4-nitrophthalonitrile or 4-phenoxyaniline in a two-step, one-pot reaction. Differential scanning calorimetry (DSC) showed that both PN oligomers exhibited low softening points. The self-catalyzed curing reactivity of the PN oligomers was confirmed by the isothermal rheological measurements. Fourier transform infrared spectroscopy (FTIR) and ultraviolet and visible spectrophotometry (UV–Vis) data of the pre-curing resins were employed to investigate the chemical structure of the pre-cured resins, suggesting that oligomers generated crosslinking sites, including triazine, isoindoline, and phthalocyanine. The results further confirmed the self-catalyzed curing reactivity of the oligomers. Thermal properties were investigated by dynamic mechanical analysis (DMA) and thermal gravimetric analysis (TGA), demonstrating good thermal properties of the cured resins. The glass transition temperatures (Tgs) of PIPN-1-325, PIPN-1-350, PIPN-1-375 were in the range of 285–345°C, the 5% weight loss temperature (T5%) was observed at 482°C. The PIPN-2-325, PIPN-2-350, PIPN-2-375 showed Tgs ranging from 293 to 370°C, and T5% of the resins were in the range of 481–501°C. Then the isothermal rheological results of model compound and PN oligomers implied that the curing process of PN oligomers was closely related to the methylene-cyano radical thermal synergistic polymerization (TSP) effect proposed in our previous research, and then a revised curing mechanism (radical TSP mechanism) was proposed.
Collapse
Affiliation(s)
- Huanxin Xie
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Xian He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Yu Pu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Jiangbo Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Menghao Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Ke Zeng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Gang Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
4
|
Sheng W, Yin R, Chen J, Zhang K. High-performance highly cross-linked networks based on ortho-imide functional mono-benzoxazines containing benzocyclobutene group. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hong YL, Sun J, Yang HW, Wang C, Liu Y, Tan ZW, Liu CM. A reactive nitrile-rich phosphonium polyelectrolyte derived from toxic PH3 tail gas: Synthesis, post-polymerization modifications, and unexpected LCST behaviour in DMF solution. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Machado I, Shaer C, Hurdle K, Calado V, Ishida H. Towards the Development of Green Flame Retardancy by Polybenzoxazines. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Yang R, Hao B, Zhang K. A study of the effect of L-histidine on the polymerization of benzoxazines and properties of their thermosets. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03485-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Yang R, Wang Y, Hao B, Zhang K. Synthesis of ortho-methyltetrahydrophthalimide functional benzoxazine containing phthalonitrile group: Thermally activated polymerization behaviors and properties of its polymer. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320954519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two novel benzoxazine monomers, oHMTI-a and oHMTI-pn, have been obtained via the modified Mannich condensation from ortho-4-methyltetrahydrophalimide functional phenol, paraformaldehyde, and aniline/4-aminophthalonitrile, respectively. The chemical structures of both benzoxazine monomers have been studied by Fourier transform infrared (FT-IR) and 1H and 13C nuclear magnetic resonance (NMR) spectra. Their polymerization processes are investigated using in-situ FT-IR and different scanning calorimetry (DSC). Specifically, the phthalonitrile group in oHMTI-pn can react at a relatively lower temperature without adding any catalysts, which suggests the presence of the thermal synergistic polymerization effect in this benzoxazine monomer. In addition, the thermal and fire related properties of the resulting polybenzoxazines are evaluated by thermogravimetric analysis (TGA) and micro-scale combustion calorimetry (MCC). The polybenzoxazine derived from oHMTI-pn shows both high thermal stability and outstanding flame retardancy, with a T g of 350°C, a T d10 value of 417°C, a high char yield value of 65%, and a very low heat release capacity value of 35.2 J/(g·K).
Collapse
Affiliation(s)
- Rui Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yuting Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Boran Hao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Kan Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Directly synthesized nitrogen-and-oxygen–doped microporous carbons derived from a bio-derived polybenzoxazine exhibiting high-performance supercapacitance and CO2 uptake. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109954] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Studies on the isomeric effect of nitrile functionality on the polymerization and thermal properties of ortho-norbornene-based benzoxazine resins. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02087-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|