1
|
Park N, Moon CE, Song Y, Yu Sun S, Kwon JM, Yoon S, Park S, Jeong B, Yeun J, Hardie JM, Lee JK, Lee KG, Ji YW, Im SG. Long-Lasting, Transparent Antibacterial Shield: A Durable, Broad-Spectrum Anti-Bacterial, Non-Cytotoxic, Transparent Nanocoating for Extended Wear Contact Lenses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405635. [PMID: 39344596 DOI: 10.1002/smll.202405635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The increasing incidence of serious bacterial keratitis, a sight-threatening condition often exacerbated by inadequate contact lens (CLs) care, highlights the need for innovative protective technology. This study introduces a long-lasting antibacterial, non-cytotoxic, transparent nanocoating for CLs via a solvent-free polymer deposition method, aiming to prevent bacterial keratitis. The nanocoating comprises stacked polymer films, with poly(dimethylaminomethyl styrene-co-ethylene glycol dimethacrylate) (pDE) as a biocompatible, antibacterial layer atop poly(2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane) (pV4D4) as an adhesion-promoting layer. The pD6E1-grafted (g)-pV4D4 film shows non-cytotoxicity toward two human cell lines and antibacterial activity of >99% against four bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), an antibiotic-resistant bacteria and Pseudomonas aeruginosa, which causes ocular diseases. Additionally, the film demonstrates long-lasting antibacterial activity greater than 96% against MRSA for 9 weeks in phosphate-buffered saline. To the best knowledge, this duration represents the longest reported long-term stability with less than 5% decay of antibacterial performance among contact-killing antibacterial coatings. The film exhibits exceptional mechanical durability, retaining its antibacterial activity even after 15 washing cycles. The pD6E1-g-pV4D4-coated CL maintains full optical transmittance compared to that of pristine CL. It is expected that the unprecedentedly prolonged antibacterial performance of the coating will significantly alleviate the risk of infection for long-term CL users.
Collapse
Affiliation(s)
- Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Chae-Eun Moon
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts, 02139, USA
| | - Sang Yu Sun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Ji-Min Kwon
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sunghyun Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Jemin Yeun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| | - Joseph Michael Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, Massachusetts, 02139, USA
| | - Jun-Ki Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Daejeon, Yuseong-gu, 34141, Republic of Korea
| | - Yong Woo Ji
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeo, Yuseong-gu, 34141, Republic of Korea
| |
Collapse
|
2
|
Kim S, Song Y, Kim J, Jeong B, Park N, Park YM, Kim YT, Rho D, Lee SJ, Choi BG, Im SG, Lee KG. Nanotopology-Enabled On-Site Pathogen Detection for Managing Atopic Dermatitis. Adv Healthc Mater 2024; 13:e2303272. [PMID: 38412280 DOI: 10.1002/adhm.202303272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/19/2024] [Indexed: 02/29/2024]
Abstract
Atopic dermatitis (AD), a prevalent skin condition often complicated by microbial infection, poses a significant challenge in identifying the responsible pathogen for its effective management. However, a reliable, safe tool for pinpointing the source of these infections remains elusive. In this study, a novel on-site pathogen detection that combines chemically functionalized nanotopology with genetic analysis is proposed to capture and analyze pathogens closely associated with severe atopic dermatitis. The chemically functionalized nanotopology features a 3D hierarchical nanopillar array (HNA) with a functional polymer coating, tailored to isolate target pathogens from infected skin. This innovative nanotopology demonstrates superior pathogenic capture efficiency, favorable entrapment patterns, and non-cytotoxicity. An HNA-assembled stick is utilized to directly retrieve bacteria from infected skin samples, followed by extraction-free quantitative loop-mediated isothermal amplification (direct qLAMP) for validation. To mimic human skin conditions, porcine skin is employed to successfully capture Staphylococcus aureus, a common bacterium exacerbating AD cases. The on-site detection method exhibits an impressive detection limit of 103 cells mL-1. The HNA-assembled stick represents a promising tool for on-site detection of bacteria associated with atopic dermatitis. This innovative approach enables to deepen the understanding of AD pathogenesis and open avenues for more effective management strategies for chronic skin conditions.
Collapse
Affiliation(s)
- Seongeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea
| | - Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung-si, 15073, Republic of Korea
| | - Donggee Rho
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Choi J, Choi K, Kwon Y, Kim D, Yoo Y, Im SG, Koh DY. Ultrathin organosiloxane membrane for precision organic solvent nanofiltration. Nat Commun 2024; 15:2800. [PMID: 38555289 PMCID: PMC10981765 DOI: 10.1038/s41467-024-47115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Promising advances in membrane technology can lead to energy-saving and eco-friendly solutions in industrial sectors. This work demonstrates a highly selective membrane with ultrathin and highly interconnected organosiloxane polymer nanolayers by initiated chemical vapor deposition to effectively separate solutes within the molecular weight range of 150-300 g mol-1. We optimize the poly(1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane) membrane by adjusting both the thickness of the selective layer and the pore sizes of its support membranes. Notably, the 29 nm selective layer imparts a uniformly narrow molecular sieving property, providing a record-high solute-solute selectivity of 39.88 for different-sized solutes. Furthermore, a solute-solute selectivity of 11.04 was demonstrated using the real-world active pharmaceutical ingredient mixture of Acyclovir and Valacyclovir, key components for Herpes virus treatment, despite their molecular weight difference of less than 100 g mol-1. The highly interconnected membrane is expected to meet rigorous requirements for high-standard active pharmaceutical ingredient separation.
Collapse
Affiliation(s)
- Jihoon Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keonwoo Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - YongSung Kwon
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Daehun Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Youngmin Yoo
- Green Carbon Research Center, Chemical Process Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Zhu L, Guo P, Zhang Y, Lan X, Xu W. Research progress of All-in-One PCR tube biosensors based on functional modification and intelligent fabrication. Biosens Bioelectron 2024; 246:115824. [PMID: 38029707 DOI: 10.1016/j.bios.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
PCR amplification technology is the cornerstone of molecular biology. All-in-One PCR tube, as an emerging integrated device, is booming in biosensors application. All-in-One PCR tube biosensors are integrated PCR tubes designed for signal recognition, signal amplification or signal output. They enable "one-pot" detection within functionally modified and intelligently fabricated PCR tubes, effectively overcoming the limitations of conventional PCR applications, like complex procedural steps, risk of contamination and so on. Based on this, the review article summarizes the recent advance of All-in-One PCR tube biosensors for the first time as well as systematically categorizes five approaches of functional modification, three types of intelligent fabrication and relevant property characterization techniques. More emphasis is placed on the review of five ways of functional modification, including physical modification, chemical modification, UV photografting surface treatment, plasma surface modification, and layer-by-layer assembly coating. Moreover, All-in-One PCR tube biosensors covering different recognition elements range from small molecules to protein are detailed discussed on principle of sensing, providing a deeper understanding of the design and application of All-in-One-tube biosensor. Last, the future opportunities and challenges in this fascinating field are also deliberated.
Collapse
Affiliation(s)
- Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Peijin Guo
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China.
| |
Collapse
|
5
|
Song Y, Song J, Kim S, Jang H, Kim H, Jeong B, Park N, Kim S, Yong D, Lim EK, Lee KG, Kang T, Im SG. Charge-shifting polyplex as a viral RNA extraction carrier for streamlined detection of infectious viruses. MATERIALS HORIZONS 2023; 10:4571-4580. [PMID: 37581348 DOI: 10.1039/d3mh00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need for rapid, user-friendly nucleic acid testing that involves simple but efficient RNA extraction. Here, we present a charge-shifting polyplex as an RNA extraction carrier for advanced diagnosis of infectious viral diseases. The polyplex comprises poly(2-(dimethylamino) ethyl acrylate) (pDMAEA) electrostatically conjugated with RNA. The pDMAEA film can rapidly dissolve in the viral RNA solution, promoting immediate binding with RNA to form the polyplex, which enables the efficient capture of a substantial quantity of RNA. Subsequently, the captured RNA can be readily released by the quick hydrolysis of pDMAEA at the onset of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), streamlining the entire process from RNA extraction to analysis. The developed method requires only 5 min of centrifugation and enables the detection of RNA in a one-pot setup. Moreover, the proposed method is fully compatible with high-speed qRT-PCR kits and can identify clinical samples within 1 h including the entire extraction to detection procedure. Indeed, the method successfully detected influenza viruses, SARS-CoV-2, and their delta and omicron variants in 260 clinical samples with a sensitivity of 99.4% and specificity of 98.9%. This rapid, user-friendly polyplex-based approach represents a significant breakthrough in molecular diagnostics.
Collapse
Affiliation(s)
- Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jayeon Song
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Seongeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hogi Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Choi Y, Song Y, Cho Y, Choi KH, Park C, Lee DG, Lee R, Choi N, Kang JY, Im SG, Seong H. Streamlined Specimen Purification for Rapid COVID-19 Diagnosis Using Positively Charged Polymer Thin Film-Coated Surfaces and Chamber Digital PCR. Anal Chem 2023; 95:14357-14364. [PMID: 37712516 DOI: 10.1021/acs.analchem.3c02716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demands rapid and straightforward diagnostic tools to prevent early-stage viral transmission. Although nasopharyngeal swabs are a widely used patient sample collection method for diagnosing COVID-19, using these samples for diagnosis without RNA extraction increases the risk of obtaining false-positive and -negative results. Thus, multiple purification steps are necessary, which are time-consuming, generate significant waste, and result in substantial sample loss. To address these issues, we developed surface-modified polymerase chain reaction (PCR) tubes using the tertiary aminated polymer poly(2-dimethylaminomethylstyrene) (pDMAMS) via initiated chemical vapor deposition. Introducing the clinical samples into the pDMAMS-coated tubes resulted in approximately 100% RNA capture efficiency within 25 min, which occurred through electrostatic interactions between the positively charged pDMAMS surface and the negatively charged RNA. The captured RNA is then detected via chamber digital PCR, enabling a sensitive, accurate, and rapid diagnosis. Our platform provides a simple and efficient RNA extraction and detection strategy that allows detection from 22 nasopharyngeal swabs and 21 saliva specimens with 0% false negatives. The proposed method can facilitate the diagnosis of COVID-19 and contribute to the prevention of early-stage transmission.
Collapse
Affiliation(s)
- Yunyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Inc., 241, Pangyoyeok-ro, Bundang-gu, Seongnam, Gyeonggi 13494, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Raeseok Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ji Yoon Kang
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Lee C, Lee C, Lee S, Choi J, Yoo H, Im SG. A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors. Nat Commun 2023; 14:3757. [PMID: 37353504 DOI: 10.1038/s41467-023-39394-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
A new type of heterojunction non-volatile memory transistor (H-MTR) has been developed, in which the negative transconductance (NTC) characteristics can be controlled systematically by a drain-aligned floating gate. In the H-MTR, a reliable transition between N-shaped transfer curves with distinct NTC and monolithically current-increasing transfer curves without apparent NTC can be accomplished through programming operation. Based on the H-MTR, a binary/ternary reconfigurable logic inverter (R-inverter) has been successfully implemented, which showed an unprecedentedly high static noise margin of 85% for binary logic operation and 59% for ternary logic operation, as well as long-term stability and outstanding cycle endurance. Furthermore, a ternary/binary dynamic logic conversion-in-memory has been demonstrated using a serially-connected R-inverter chain. The ternary/binary dynamic logic conversion-in-memory could generate three different output logic sequences for the same input signal in three logic levels, which is a new logic computing method that has never been presented before.
Collapse
Affiliation(s)
- Chungryeol Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Changhyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Seungmin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea
| | - Junhwan Choi
- Department of Chemical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin, 16890, South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea.
- KAIST Institute for NanoCentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Korea.
| |
Collapse
|
8
|
Kumar S, Kharb A, Vazirani A, Chauhan RS, Pramanik G, Sengupta M, Ghosh S. Nucleic acid extraction from complex biofluid using toothpick-actuated over-the-counter medical-grade cotton. Bioorg Med Chem 2022; 73:117009. [PMID: 36126446 DOI: 10.1016/j.bmc.2022.117009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Nucleic acid amplification technique (NAAT)-assisted detection is the primary intervention for pathogen molecular diagnostics. However, NAATs such as quantitative real-time polymerase chain reaction (qPCR) require prior purification or extraction of target nucleic acid from the sample of interest since the latter often contains polymerase inhibitors. Similarly, genetic disease screening is also reliant on the successful extraction of pure patient genomic DNA from the clinical sample. However, such extraction techniques traditionally utilize spin-column techniques that in turn require centralized high-speed centrifuges. This hinders any potential deployment of qPCR- or PCR-like NAAT methods in resource-constrained settings. The development of instrument-free nucleic acid extraction methods, especially those utilizing readily available materials would be of great interest and benefit to NAAT-mediated molecular diagnosis workflows in resource-constrained settings. In this report, we screened medical-grade cotton, a readily available over-the-counter biomaterial to extract genomic DNA (gDNA) spiked in 30 %, 45 %, and 60 % serum or cell lysate. The extraction was carried out in a completely instrument-free manner using cotton and a sterilized toothpick and was completed in 30 min (with using chaotropic salt) or 10 min (without using chaotropic salt). The quality of the extracted DNA was then probed using PCR followed by agarose gel analysis for preliminary validation of the study. The qPCR experiments then quantitatively established the extraction efficiency (0.3-27 %, depending on serum composition). Besides, percent similarity score obtained from the Sanger sequencing experiments probed the feasibility of extracted DNA towards polymerase amplification with fluorescent nucleotide incorporation. Overall, our method demonstrated that DNA extraction could be performed utilizing toothpick-mounted cotton both with or without using a chaotropic salt, albeit with a difference in the quality of the extracted DNA.
Collapse
Affiliation(s)
- Shrawan Kumar
- Department of Chemistry, Bennett University, India; Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Anjali Kharb
- Department of Biotechnology, Bennett University, India
| | - Aman Vazirani
- Department of Biotechnology, Bennett University, India
| | | | - Goutam Pramanik
- UGC-DAE CSR, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Souradyuti Ghosh
- Department of Chemistry, Bennett University, India; Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India; UGC-DAE CSR, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India.
| |
Collapse
|
9
|
Shirai J, Yoshida K, Koreeda H, Kitamori T, Yamaguchi T, Mawatari K. Water structure in 100 nm nanochannels revealed by nano X-ray diffractometry and Raman spectroscopy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Song Y, Kim YT, Choi Y, Kim H, Yeom MH, Kim Y, Lee TJ, Lee KG, Im SG. All-in-One DNA Extraction Tube for Facilitated Real-Time Detection of Infectious Pathogens. Adv Healthc Mater 2021; 10:e2100430. [PMID: 34050626 DOI: 10.1002/adhm.202100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Indexed: 12/23/2022]
Abstract
An "all-in-one tube" platform is developed, where the genetic analysis involving DNA extraction, amplification, and detection can be performed in a single tube. The all-in-one tube consists of a polymerase chain reaction (PCR) tube in which the inner surface is conformally modified with a tertiary-amine-containing polymer to generate a strong electrostatic interaction with DNA. The all-in-one tube provides high DNA capture efficiency exceeding 80% from Escherichia coli O157: H7 pathogen at a wide range of DNA amount from 0.003 to 3 ng. Indeed, the use of the surface-functionalized PCR tube enables direct amplification and detection of the surface-captured DNA without the modification of standard real-time PCR instrument. Besides, this platform has sensitivity, selectivity, and reliability enough for accurate detection at the minimal infective dose of both gram-positive and negative pathogens. The all-in-one tube enables the direct molecular diagnosis, substantially reducing the labor-intensive pathogen detection steps while providing high compatibility with the currently established real-time PCR instruments, and illustrates its on-site applicability with convenience expandable to various genetic analyses including food safety testing, forensic analysis, and clinical diagnosis.
Collapse
Affiliation(s)
- Younseong Song
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology Korea Polytechnic University 237 Sangidaehak‐ro Siheung‐si 15073 Republic of Korea
| | - Yunho Choi
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Hogi Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Min Hee Yeom
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Tae Jae Lee
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Kyoung G. Lee
- Nanobio Application Team National NanoFab Center 291 Daehak‐ro Daejeon 34141 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
- KAIST Institute for NanoCentury Korea Advanced Institute of Science and Technology 291 Daehak‐ro Daejeon 34141 Republic of Korea
| |
Collapse
|
11
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
12
|
Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. SENSORS 2021; 21:s21093058. [PMID: 33925730 PMCID: PMC8125272 DOI: 10.3390/s21093058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Nucleic acid (NA) extraction is a basic step for genetic analysis, from scientific research to diagnostic and forensic applications. It aims at preparing samples for its application with biomolecular technologies such as isothermal and non-isothermal amplification, hybridization, electrophoresis, Sanger sequencing and next-generation sequencing. Multiple steps are involved in NA collection from raw samples, including cell separation from the rest of the specimen, cell lysis, NA isolation and release. Typically, this process needs molecular biology facilities, specialized instrumentation and labor-intensive operations. Microfluidic devices have been developed to analyze NA samples with high efficacy and sensitivity. In this context, the integration within the chip of the sample preparation phase is crucial to leverage the promise of portable, fast, user-friendly and economic point-of-care solutions. This review presents an overview of existing lab-on-a-chip (LOC) solutions designed to provide automated NA extraction from human raw biological fluids, such as whole blood, excreta (urine and feces), saliva. It mainly focuses on LOC implementation aspects, aiming to describe a detailed panorama of strategies implemented for different human raw sample preparations.
Collapse
Affiliation(s)
- Daniele Obino
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, James Watt South Building, Glasgow G128LT, UK;
| | | | - Andrea Alessandrini
- Nanoscience Institute, National Research Council, 41125 Modena, Italy;
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Facci
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
- Correspondence:
| | - Federica Viti
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| |
Collapse
|
13
|
Cho Y, Lee M, Park S, Kim Y, Lee E, Im SG. A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications. BIOTECHNOL BIOPROC E 2021; 26:165-178. [PMID: 33821132 PMCID: PMC8013202 DOI: 10.1007/s12257-020-0269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023]
Abstract
For last two decades, the demand for precisely engineered three-dimensional structures has increased continuously for the developments of biomaterials. With the recent advances in micro- and nano-fabrication techniques, various devices with complex surface geometries have been devised and produced in the pharmaceutical and medical fields for various biomedical applications including drug delivery and biosensors. These advanced biomaterials have been designed to mimic the natural environments of tissues more closely and to enhance the performance for their corresponding biomedical applications. One of the important aspects in the rational design of biomaterials is how to configure the surface of the biomedical devices for better control of the chemical and physical properties of the bioactive surfaces without compromising their bulk characteristics. In this viewpoint, it of critical importance to secure a versatile method to modify the surface of various biomedical devices. Recently, a vapor phase method, termed initiated chemical vapor deposition (iCVD) has emerged as damage-free method highly beneficial for the conformal deposition of various functional polymer films onto many kinds of micro- and nano-structured surfaces without restrictions on the substrate material or geometry, which is not trivial to achieve by conventional solution-based surface functionalization methods. With proper structural design, the functional polymer thin film via iCVD can impart required functionality to the biomaterial surfaces while maintaining the fine structure thereon. We believe the iCVD technique can be not only a valuable approach towards fundamental cell-material studies, but also of great importance as a platform technology to extend to other prospective biomaterial designs and material interface modifications for biomedical applications.
Collapse
Affiliation(s)
- Younghak Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| | - Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced of Institute of Science and Technology, Daejeon, 34141 Korea
| |
Collapse
|
14
|
Choi Y, Song Y, Kim YT, Lee SJ, Lee KG, Im SG. Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3098-3108. [PMID: 33423455 DOI: 10.1021/acsami.0c16862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene-co-hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface via the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (μCP) to define each partition for the nucleic acid isolation. The pDH layer is a positively charged surface, which is desirable for the bacterial lysis and DNA capture, while showing exceptional water stability for more than 24 h. The hydrophobic μCP-treated pDH surface is stable under aqueous conditions at a high temperature (70 °C) for 1 h and enables the rapid and reliable formation of thousands of sessile microdroplets for the compartmentalization of an aqueous sample solution without involving bulky and costly microfluidic devices. By assembling the multifunctional micropattern array into the microfluidic chip, the isothermal amplification in each partition can detect DNA templates over a concentration range of 0.01-2 ng/μL. The untreated bacterial cells can also be directly compartmentalized via the microdroplet formation, followed by the on-site cell lysis and DNA capture on the compartmentalized pDH surface. For Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus cells, cell numbers ranging from 1.4 × 104 to 1.4 × 107 can be distinguished by using the multifunctional micropattern array, regardless of the cell type. The multifunctional micropattern array developed in this study provides a novel multifunctional compartmentalization method for rapid, simple, and accurate digital nucleic acid assays.
Collapse
Affiliation(s)
- Yunho Choi
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073, Republic of Korea
| | - Seok Jae Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
16
|
Choi G, Cho Y, Yu SJ, Baek J, Lee M, Kim Y, Lee E, Im SG. Polymer-Coated Surface as an Enzyme-Free Culture Platform to Improve Human Mesenchymal Stem Cell (hMSC) Characteristics in Extended Passaging. ACS APPLIED BIO MATERIALS 2020; 3:7654-7665. [DOI: 10.1021/acsabm.0c00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Goro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younghak Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jieung Baek
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Choi G, Song Y, Lim H, Lee SH, Lee HK, Lee E, Choi BG, Lee JJ, Im SG, Lee KG. Antibacterial Nanopillar Array for an Implantable Intraocular Lens. Adv Healthc Mater 2020; 9:e2000447. [PMID: 32743966 DOI: 10.1002/adhm.202000447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/20/2020] [Indexed: 01/30/2023]
Abstract
Postsurgical intraocular lens (IOL) infection caused by pathogenic bacteria can result in blindness and often requires a secondary operation to replace the contaminated lens. The incorporation of an antibacterial property onto the IOL surface can prevent bacterial infection and postoperative endophthalmitis. This study describes a polymeric nanopillar array (NPA) integrated onto an IOL, which captures and eradicates the bacteria by rupturing the bacterial membrane. This is accomplished by changing the behavior of the elastic nanopillars using bending, restoration, and antibacterial surface modification. The combination of the polymer coating and NPA dimensions can decrease the adhesivity of corneal endothelial cells and posterior capsule opacification without causing cytotoxicity. An ionic antibacterial polymer layer is introduced onto an NPA using an initiated chemical vapor deposition process. This improves bacterial membrane rupture efficiency by increasing the interactions between the bacteria and nanopillars and damages the bacterial membrane using quaternary ammonium compounds. The newly developed ionic polymer-coated NPA exceeds 99% antibacterial efficiency against Staphylococcus aureus, which is achieved through topological and physicochemical surface modification. Thus, this paper provides a novel, efficient strategy to prevent postoperative complications related to bacteria contamination of IOL after cataract surgery.
Collapse
Affiliation(s)
- Goro Choi
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyungjun Lim
- Nano‐Convergence Mechanical Systems Research Division Korea Institute of Machinery and Materials Daejeon 34103 Republic of Korea
| | - Song Ha Lee
- Division of Nano‐Bio Sensor/Chip Development National NanoFab Center Daejeon 34141 Republic of Korea
| | - Hyung Keun Lee
- Institute of Vision Research Department of Ophthalmology Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering Kangwon National University Samcheok 25913 Republic of Korea
| | - Jae Jong Lee
- Nano‐Convergence Mechanical Systems Research Division Korea Institute of Machinery and Materials Daejeon 34103 Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Kyoung G. Lee
- Division of Nano‐Bio Sensor/Chip Development National NanoFab Center Daejeon 34141 Republic of Korea
| |
Collapse
|