1
|
Srinivasan MK, Premnath BJ, Parimelazhagan R, Namasivayam N. Synthesis, characterization, and evaluation of the anticancer properties of pH-responsive carvacrol-zinc oxide quantum dots on breast cancer cell line (MDA-MB-231). Cell Biochem Funct 2024; 42:e4062. [PMID: 38807490 DOI: 10.1002/cbf.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Ramya Parimelazhagan
- Department of Biochemistry, Faculty of Medicine, Sri Lakshmi Narayana Institute of Medical Sciences (SLIMS), Puducherry, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| |
Collapse
|
2
|
Chen Y, Xue Q, Luo W, Sun Y, Li M, Hang T. ZnO/ZnS core-shell quantum dots with enhanced ultraviolet fluorescence and low cytotoxicity for cell imaging. NANOTECHNOLOGY 2023; 34:505704. [PMID: 37714140 DOI: 10.1088/1361-6528/acfa06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Zinc oxide quantum dots (ZnO QDs) have gained wide attention due to their wide excitation spectrum, large Stokes shift, adjustable photoluminescence (PL) spectrum, and excellent biocompatibility. However, low fluorescence intensity and poor stability restrict their further applications. In this work, zinc sulfide (ZnS) as a surface modifier, ZnO/ZnS core-shell QDs with type-I core-shell structure and particle size of 5 nm were prepared via sol-gel method. Transmission electron microscope characterization demonstrates the core-shell structure and spherical morphology of the as-synthesized ZnO/ZnS QDs. The PL spectra show that ultraviolet fluorescence has been greatly enhanced. The maximum fluorescence intensity of ZnO/ZnS core-shell QDs increases by 5288.6% compared with that of bare ZnO QDs. The PL quantum yield increases from 9.53% to 30.95%. After being stored for three weeks, the fluorescence performance can be well retained. Furthermore, the cytotoxicity tests confirm the excellent biocompatibility of ZnO/ZnS core-shell QDs, demonstrating they are good candidates for cell imaging.
Collapse
Affiliation(s)
- Yuhang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qi Xue
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Weiguo Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tao Hang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
5
|
El-Borlsy H, Hanafy NAN, El-Kemary MA. Development and application of naturally derived, cost-effective CQDs with cancer targeting potential. Cell Biol Int 2023; 47:808-822. [PMID: 36640423 DOI: 10.1002/cbin.11986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/06/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Carbon quantum dots (CQDs) derived from natural sources have obtained potential interest in biomedical imaging and therapy because of their excellent biocompatibility properties, which include water solubility, simple synthesis and low cytotoxicity. Here the cytotoxicity of ethylene-diamine doped carbon quantum dots (N-CQDs) delivered to breast cancer MCF-7 cells was investigated. Folic acid was used to raise folate recognition and increase FA-NCQD accumulation in the cells, then apoptosis was assayed using nuclear fragmentation, acridine orange labeling, fluorescence imaging, flow cytometry, and caspase 3 expression. The data show that functionalization of these CQDs, derived from a natural source, have potential application in eliminating cancer cells, as shown here for the invasive breast cancer cells, MCF-7. This nano-delivery system provides a novel target therapy possibility therapeutic approach for cancer cells.
Collapse
Affiliation(s)
- Hanaa El-Borlsy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
6
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
7
|
Demirbolat GM, Altintas L, Yilmaz S, Arsoy T, Sözmen M, Degim IT. Nanodesigning of multifunctional quantum dots and nanoparticles for the treatment of fibrosarcoma. J Microencapsul 2021; 39:210-225. [PMID: 34796787 DOI: 10.1080/02652048.2021.1990423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM An effective, dual drug(DD) loaded nanocarrier system (nano particle(NP), quantum dots(QDs)) having two active substances was aimed to develop for the treatment of fibrosarcoma. METHODS Zinc oxide(ZnO) QDs were produced using zinc acetate dehydrate as a precursor, were incorporated with chitosan(Ch), and finally decorated with PEG-linked folic acid and were found to be effective after imatinib mesylate(IM) and dexketoprofen trometamol(DT) were loaded. Characterizations, invitro drug releases, cell toxicities, penetrations through cell lines and in-vivo animal tests of the prepared nanosystems were performed. RESULTS The size of hybrid nanoparticles were 168.6 ± 48.8nm, surface charge was -35.8 ± 0.26mV. The encapsulation efficiency was 75% for IM and 99% for DT. DD-functionalized QDChNPs and lyophilized functionalized QDChNPs in capsules slowed down tumor growth by up to 76.5 % and 88.7 %. CONCLUSIONS Our results demonstrate that developed hybrid nanoparticles are highly effective. This hybrid system gathers many of the advantages of nanotechnology into one form.
Collapse
Affiliation(s)
- Gulen Melike Demirbolat
- Department of Pharmaceutical Technology, Biruni University Faculty of Pharmacy, 34010, Topkapi, Istanbul, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, 06330, Yenimahalle, Ankara, Turkey
| | - Levent Altintas
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, 06110, Ankara, Turkey
| | - Sukran Yilmaz
- Food and Mouth Diseases Institute, 06520, Ankara, Turkey
| | - Taibe Arsoy
- Food and Mouth Diseases Institute, 06520, Ankara, Turkey
| | - Mahmut Sözmen
- Department of Preclinical Sciences, Ondokuz Mayıs University Faculty of Veterinary, Samsun, Turkey
| | - Ismail Tuncer Degim
- Department of Pharmaceutical Technology, Biruni University Faculty of Pharmacy, 34010, Topkapi, Istanbul, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, 06330, Yenimahalle, Ankara, Turkey
| |
Collapse
|