1
|
Liu M, Zhang ZX, Wang JH, Guo RB, Zhang L, Kong L, Yu Y, Zang J, Liu Y, Li XT. Immunomodulatory and anti-ovarian cancer effects of novel astragalus polysaccharide micelles loaded with podophyllotoxin. Int J Biol Macromol 2024; 290:138960. [PMID: 39708884 DOI: 10.1016/j.ijbiomac.2024.138960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ovarian cancer, a highly lethal form of gynecological cancer globally, has witnessed notable advancements in its treatment through the integration of nanotechnology and immunotherapy. Here, we designed a novel astragalus polysaccharide vector (PDA), encapsulating podophyllotoxin (PPT), and modifying methotrexate (DSPE-PEG2000-MTX) on its surface for targeting ovarian cancer cells with high folate receptor expression. We prepared novel MTX-modified PPT-loaded astragalus polysaccharide micelles (MTX-PPT-micelles) by dialysis method and evaluated their characterization, stability, safety and targeting ability. EDU proliferation, apoptosis, wound healing, and macrophage polarization experiments were performed, and a mouse ectopic tumor model and a lung metastasis model were established to evaluate the antitumor effects of MTX-PPT-micelles. The prepared MTX-PPT-micelles had appropriate particle size, good stability and safety, and were able to achieve slow drug release. In vitro and in vivo experiments showed that MTX-PPT-micelles significantly enhanced tumor uptake and apoptosis, and significantly inhibited tumor proliferation, invasion and metastasis processes. In addition, MTX-PPT-micelles could improve tumor immunosuppression by shifting tumor-associated macrophages from M2 to M1 phenotype. In conclusion, this study successfully constructed a novel nano-delivery system to achieve targeted therapy for ovarian cancer by combating tumor cells with immunomodulatory effects on tumor-associated macrophages.
Collapse
Affiliation(s)
- Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China.
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Shenyang Key Laboratory of Chinese Medicine targeted Delivery Key laboratory, China.
| |
Collapse
|
2
|
Pouyanfar N, Farnam G, Ahmadi M, Masoudifar R, Banan K, Asadian E, Shahhosseini S, Shahbazi MA, Shirazi FH, Ghorbani-Bidkorpeh F. Synthesis, modification, characterization, and in vitro evaluation of chitosan-hyaluronic acid coated MIL-100 (Fe) nanoparticles for methotrexate delivery in rheumatoid arthritis. Int J Biol Macromol 2024; 283:137715. [PMID: 39551326 DOI: 10.1016/j.ijbiomac.2024.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and potential joint destruction. Effective management of RA is crucial to improve patients' quality of life and prevent long-term disability. Methotrexate (MTX) is a widely used disease-modifying antirheumatic drug (DMARD) that has shown efficacy in treating RA. However, its use is often limited by significant adverse effects, particularly on healthy tissues and organs, including hepatotoxicity, myelosuppression, and gastrointestinal complications. Therefore, developing targeted drug delivery systems (DDSs) for MTX is essential to enhance its therapeutic effects while minimizing systemic toxicity. Metal-organic frameworks (MOFs), specifically MIL-100(Fe), present a promising approach for targeted drug delivery in RA treatment due to their high porosity, large surface area, and excellent loading capacity. The acid-responsive properties of MIL-100(Fe) make it particularly suitable for targeting the acidic microenvironment of inflamed joints. In this study, we synthesized MIL-100(Fe) using a microwave-assisted method and embedded MTX within these nanocarriers. The nanocarriers were subsequently coated with chitosan and modified with hyaluronic acid through 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Comprehensive characterization techniques such as dynamic light scattering (DLS), zeta potential analysis, Brunauer-Emmett-Teller (BET) surface area measurement, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) were employed to evaluate the nanoparticles. Additionally, we assessed cell cytotoxicity and cellular uptake in macrophage cell lines. Overall, the results indicate that the prepared MIL-100(Fe) nanoparticles are a suitable DDS for targeted MTX delivery in RA treatment.
Collapse
Affiliation(s)
- Niki Pouyanfar
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Masoudifar
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Banan
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Farshad H Shirazi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chekkaramkodi D, Turk SE, Ali M, Butt H. In-situ synthesis and integration of gold nanoparticles into 3D printed optical fiber probes. Sci Rep 2024; 14:29736. [PMID: 39613870 DOI: 10.1038/s41598-024-81139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
This work uses the polymeric reduction method to explore the in-situ synthesis of gold nanoparticles (AuNPs) within 3D-printed optical fiber probes (OFPs). Digital light processing (DLP) 3D printing is employed to fabricate the OFPs using a resin consisting of hydroxyethyl methacrylate (HEMA) and polyethylene glycol diacrylate (PEGDA). After printing, OFPs were immersed in a boiling gold precursor solution to facilitate the synthesis of AuNPs inside the polymer matrix. We produced single material (HEMA/PEGDA) and multimaterial (HEMA/PEGDA + Dentaclear) OFPs loaded with AuNPs at different concentrations. Scanning electron microscopy analysis confirmed the effective distribution and dispersion of AuNPs within the polymer matrix. The optical properties, including reflection and transmission spectra, are comprehensively measured using customized setups. The localized surface plasmon resonance of the embedded AuNPs created a distinct dip in the 500-600 nm wavelength range. Higher AuNP concentrations and longer dipping times enhanced light absorption, reducing reflection and transmission intensities. Multimaterial OFPs also exhibited tunable wavelength filtering capabilities based on the AuNP concentration. The AuNP-loaded OFPs demonstrated stable optical performance across varying temperatures and pH environments, highlighting their potential for diverse applications.
Collapse
Affiliation(s)
- Dileep Chekkaramkodi
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Said El Turk
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Murad Ali
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Ali SH, Ali H, Aziz MA. Computational identification of PDL1 inhibitors and their cytotoxic effects with silver and gold nanoparticles. Sci Rep 2024; 14:26610. [PMID: 39496756 PMCID: PMC11535480 DOI: 10.1038/s41598-024-77868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Immunotherapy is a promising treatment for cancer that aims to boost the immune system's response to cancer cells. This can be achieved by blocking Programmed cell death protein 1/Programmed death-ligand 1 (PD1/PDL1), which activates T cells. In this work, the aim was to find high-affinity drugs against PDL1 using computational tools and conjugate nanoparticles with them. The cytotoxic activity of the nanoparticle conjugated drugs was then tested. The screening of 100,000 drugs from the ZINC database and FDA-approved drugs was done computationally. The physicochemical properties and toxicity of the drugs were analyzed using SwissADME and ProTox-II, respectively. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using extracts of Catharanthus roseus flowers and Juglans regia shells, respectively. The characterization of AgNPs and AuNPs was performed using UV-Vis spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Their conjugation with the drugs Irinotecan, Imatinib, and Methotrexate was also confirmed using UV-Vis, FTIR, and Dynamic light scattering (DLS). The top screened drugs were ZINC1098661 and 3 FDA-approved drugs (Irinotecan, Imatinib, and Methotrexate). Docking studies revealed that Irinotecan had the highest binding affinity towards PDL1 when conjugated with silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The Irinotecan-PDL1 complex was confirmed as the most stable through molecular dynamics simulations. The result of the methylthiazol tetrazolium (MTT) assay showed that conjugated AgNPs and AuNPs with Irinotecan had a higher toxic effect on the A549 cancer cell line than AgNPs and AuNPs conjugated with Imatinib. This study provides a promising avenue for further investigation and development of nanoparticle-drug conjugates as a potential cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Syed Hammad Ali
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hiba Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
5
|
Bhowmik S, Baral B, Rit T, Jha HC, Das AK. Design and synthesis of a nucleobase functionalized peptide hydrogel: in vitro assessment of anti-inflammatory and wound healing effects. NANOSCALE 2024; 16:13613-13626. [PMID: 38958597 DOI: 10.1039/d4nr01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
6
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Farjadian F, Faghih Z, Fakhimi M, Iranpour P, Mohammadi-Samani S, Doroudian M. Glucosamine-Modified Mesoporous Silica-Coated Magnetic Nanoparticles: A "Raisin-Cake"-like Structure as an Efficient Theranostic Platform for Targeted Methotrexate Delivery. Pharmaceutics 2023; 15:2491. [PMID: 37896251 PMCID: PMC10610088 DOI: 10.3390/pharmaceutics15102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This study presents the synthesis of glucosamine-modified mesoporous silica-coated magnetic nanoparticles (MNPs) as a therapeutic platform for the delivery of an anticancer drug, methotrexate (MTX). The MNPs were coated with mesoporous silica in a templated sol-gel process to form MNP@MSN, and then chloropropyl groups were added to the structure in a post-modification reaction. Glucosamine was then reacted with the chloro-modified structure, and methotrexate was conjugated to the hydroxyl group of the glucose. The prepared structure was characterized using techniques such as Fourier transform infrared (FT-IR) spectroscopy, elemental analysis (CHN), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), a vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). Good formation of nano-sized MNPs and MNP@MSN was observed via particle size monitoring. The modified glucosamine structure showed a controlled release profile of methotrexate in simulated tumor fluid. In vitro evaluation using the 4T1 breast cancer cell line showed the cytotoxicity, apoptosis, and cell cycle effects of methotrexate. The MTT assay showed comparable toxicity between MTX-loaded nanoparticles and free MTX. The structure could act as a glucose transporter-targeting agent and showed increased uptake in cancer cells. An in vivo breast cancer model was established in BALB/C mice, and the distribution of MTX-conjugated MNP@MSN particles was visualized using MRI. The MTX-conjugated particles showed significant anti-tumor potential together with MRI contrast enhancement.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Canter, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45550, Iran; (Z.F.); (M.F.)
| | - Maryam Fakhimi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45550, Iran; (Z.F.); (M.F.)
| | - Pooya Iranpour
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz 71936-13311, Iran;
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Canter, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
8
|
Tajik S, Garcia CN, Gillooley S, Tayebi L. 3D Printing of Hybrid-Hydrogel Materials for Tissue Engineering: a Critical Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:29-41. [PMID: 37193257 PMCID: PMC10181842 DOI: 10.1007/s40883-022-00267-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Purpose Key natural polymers, known as hydrogels, are an important group of materials in design of tissue-engineered constructs that can provide suitable habitat for cell attachment and proliferation. However, in comparison to tissues within the body, these hydrogels display poor mechanical properties. Such properties cause challenges in 3D printing of hydrogel scaffolds as well as their surgical handling after fabrication. For this reason, the purpose of this study is to critically review the 3D printing processes of hydrogels and their characteristics for tissue engineering application. Methods A search of Google Scholar and PubMed has been performed from 2003 to February 2022 using a combination of keywords. A review of the types of 3D printing is presented. Additionally, different types of hydrogels and nano-biocomposite materials for 3D printing application are critically reviewed. The rheological properties and crosslinking mechanisms for the hydrogels are assessed. Results Extrusion-based 3D printing is the most common practice for constructing hydrogel-based scaffolds, and it allows for the use of varying types of polymers to enhance the properties and printability of the hydrogel-based scaffolds. Rheology has been found to be exceedingly important in the 3D printing process; however, shear-thinning and thixotropic characteristics should also be present in the hydrogel. Despite these features of extrusion-based 3D printing, there are limitations to its printing resolution and scale. Conclusion Combining natural and synthetic polymers and a variety of nanomaterials, such as metal, metal oxide, non-metal, and polymeric, can enhance the properties of hydrogel and provide additional functionality to their 3D-printed constructs.
Collapse
Affiliation(s)
- Sanaz Tajik
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | | | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
9
|
Jahanbakhshi M, Shahrousvand M. Preparation and characterization of cross-linked poly (vinyl alcohol-co-methyl methacrylate) colloidal nanoparticles from hydrolysis of poly (vinyl acetate-co-methyl methacrylate) as a promising cancer drug delivery system. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mehdi Jahanbakhshi
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Wu J, Wang X, Zhu B, He Q, Zhang Y, Jiang W. Synthesis and characterization of magnetic polymeric nanocomposites for pH-sensitive controlled release of methotrexate. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2067-2080. [PMID: 35727073 DOI: 10.1080/09205063.2022.2093053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
As one of the well-known anticancer drugs, methotrexate (MTX) has been limited in clinical application due to its side effects on normal tissues. This study focused on the one-step hydrothermal synthesis and in vitro evaluation of Fe3O4/RGO-PEI as MTX carriers for targeted anticancer therapy. In which, the Fe3O4 provided magnetic response properties; RGO acted as a stage for Fe3O4 loading and improved the dispersion of Fe3O4; polyethylenimine (PEI) was used as a surface modifier and a storehouse for MTX. The prepared Fe3O4/RGO-PEI nanocomposites exhibited a suitable size, good stability and magnetic responsibility. And the MTX loading content and loading efficiency were calculated to be 26.6% and 90.5%, respectively. What's more, due to the diffusion and dissolution of PEI, the Fe3O4/RGO-PEI-MTX exhibited excellent pH-sensitivity, the values of MTX release rate (%) within 48 h at pH 5.8 and 4.0 were 64.3% and 87.4%, respectively. Furthermore, MTT assays in cancer cells (HepG2) and normal cells (HUVEC) demonstrated that Fe3O4/RGO-PEI-MTX exhibited high anticancer activity while low toxicity to normal cells, and also the Fe3O4/RGO-PEI composites were practically non-toxic. Thus, our results revealed that Fe3O4/RGO-PEI-MTX would be a competitive candidate for targeted delivery and controlled release of MTX.
Collapse
Affiliation(s)
- Juan Wu
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xi Wang
- School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, China
| | - Binglong Zhu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Qinting He
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yaheng Zhang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
11
|
Tan H, Park SY. One-step fabrication of pH-responsive microcapsules with aqueous cargo using aqueous two-phase system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Soltani A, Faramarzi M, Farjadian F, Parsa SAM, Panahi HA. pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery. Int J Biol Macromol 2022; 221:508-522. [PMID: 36089082 DOI: 10.1016/j.ijbiomac.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
The present study synthesized a new kind of pH-responsive active targeting glycodendrimer (ATGD) for doxorubicin delivery to cancerous cells. First, the glycodendrimer was synthesized based on the cultivation of chitosan dendrons on amine-functionalized, silica-grafted cellulose nanocrystals. Afterward, glycodendrimer was conjugated with folic acid to provide a folate receptor-targeting agent. The response surface method was employed to obtain the optimum conditions for the preparation of doxorubicin-loaded ATGD. The effect of doxorubicin/ATGD ratio, temperature, and pH on doxorubicin loading capacity was evaluated, and high loading capacity was achieved under optimized conditions. After determining doxorubicin release pattern at acidic and physiological pH, ATGD cytotoxicity was surveyed by MTT assay. Based on the results, the loading behavior of doxorubicin onto ATGD was in good agreement with monolayer-physisorption, and drug release was Fickian diffusion-controlled. ATGD could release the doxorubicin much more at acidic pH than physiological pH, corresponding to pH-responsive release behavior. Results of MTT assay confirmed the cytotoxicity of doxorubicin-loaded ATGD in cancer cells, while ATGD (without drug) was biocompatible with no tangible toxicity. These results suggested that ATGD has the potential for the treatment of cancer.
Collapse
Affiliation(s)
- Ali Soltani
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Mehdi Faramarzi
- Department of Chemical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Farjadian F, Moghadam M, Monfared M, Mohammadi‐Samani S. Mesoporous Silica Nanostructure Modified with Azo Gatekeepers for Colon Targeted Delivery of
5‐Fluorouracil. AIChE J 2022. [DOI: 10.1002/aic.17900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
| | - Maryam Moghadam
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
- Department of Pharmaceutics, School of Pharmacy Shiraz University of Medical Science Shiraz Iran
| | - Mohammad Monfared
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Soliman Mohammadi‐Samani
- Pharmaceutical Sciences Research Center Shiraz University of Medical Science Shiraz Iran
- Department of Pharmaceutics, School of Pharmacy Shiraz University of Medical Science Shiraz Iran
| |
Collapse
|
14
|
Bahmani M, Akbarian M, Tayebi L, Farjadian F. The inhibitory effect of curcumin loaded poly (vinyl caprolactam) nanohydrogel on insulin fibrillation. Process Biochem 2022; 117:209-218. [PMID: 36506035 PMCID: PMC9733913 DOI: 10.1016/j.procbio.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloidosis refers to a group of diseases caused by the deposition of abnormal proteins in tissues. Herein, curcumin was loaded in a nanohydrogel made of poly (vinylcaprolactam) to improve its solubility and was employed to exert an inhibitory effect on insulin fibrillation, as a protein model. Poly (vinyl caprolactam), cross-linked with polyethylene glycol diacrylate, was synthesized by the reversible addition-fragmentation chain transfer method. The release profile of curcumin exhibited a first-order kinetic model, signifying that the release of curcumin was mainly dominated by diffusion processes. The study of curcumin release showed that 78% of the compound was released within 72 h. The results also revealed a significant decline in insulin fibrillation in the presence of curcumin-loaded poly (vinyl caprolactam). These observations confirmed that increasing the ratio of curcumin-loaded poly (vinyl caprolactam) to insulin concentration would increase the hydrogel's inhibitory effect (P-value < 0.05). Furthermore, transmission electron and fluorescence microscopies and Fourier-transform infrared spectroscopy made it possible to study the size and interaction of fibrils. Based on the results, this nanohydrogel combination could protect the structure of insulin and had a deterrent effect on fibril formation.
Collapse
Affiliation(s)
- Marzieh Bahmani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan,Corresponding author. (M. Akbarian)
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence to: Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, P. O. Box 7146864685, Shiraz, Iran. (F. Farjadian)
| |
Collapse
|
15
|
Farjadian F, Behzad-Behbahani A, Mohammadi-Samani S, Ghasemi S. In vitro DNA plasmid condensation and transfection through pH-responsive nanohydrogel. Prog Biomater 2022; 11:219-227. [PMID: 35532846 DOI: 10.1007/s40204-022-00187-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022] Open
Abstract
Nanohydrogels (NHs) with the benefits of both nanomaterials and hydrogels unlock novel opportunities and applications in biomedicine. Nowadays, cationic NHs have attracted attention in the delivery of genetic materials into cells. Herein, by using reversible addition-fragmentation chain transfer method, an NH-based poly(hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and cross-linked by poly(ethylene glycol)diacrylate with pH responsiveness character was developed. Several techniques including nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and gel permeation chromatography confirmed the success in the synthesis. The pH responsiveness of the developed NH was shown by transmission electron microscopy and dynamic light scattering technique. The average sizes of NHs in the normal (7.4) and acidic pH (5.5) were 180 and 390 nm, respectively. The ability of the developed NH to condense genetic materials was checked using gel retardation assay with different ratios of NH and pCMV6-IRES-AcGFP, as a plasmid encoding green fluorescence protein. Results of gel retardation assay showed a decreasing trend in plasmid electrophoretic mobility with the increase in the NH concentration. The NH/plasmid complexes were stopped completely at the ratio of 5 and the plasmid band vanished at the ratio of 10. The quantitative and qualitative results of the cell transfection experiment using different ratios of NH/plasmid showed the ability of NH to carry plasmid molecules into the cancerous cells. The best transfection efficiency was observed by nanohydrogel/plasmid weight ratio of 10, while other ratios including 2, 5 and 20 showed 0.8, 10 and 12% of transfection efficiency, respectively. All the assessed factors showed that NH has the potential to be considered as an efficient gene delivery vehicle.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
16
|
Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol Res 2022. [DOI: 10.1007/s13233-022-0035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Shahrousvand M, Hajikhani M, Nazari L, Aghelinejad A, Shahrousvand M, Irani M, Rostami A. Preparation of colloidal nanoparticles PVA-PHEMA from hydrolysis of copolymers of PVAc-PHEMA as anticancer drug carriers. NANOTECHNOLOGY 2022; 33:275603. [PMID: 35320784 DOI: 10.1088/1361-6528/ac6089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The novel pH-responsive polymer nanoparticles have been widely used for drug delivery and cancer therapy. The pH-sensitive nanoparticles include chemical structures that can accept or donate protons in response to an environmental pH change. Polybases which mostly contain alkaline groups such as amines and hydroxy, accept protons at low pH and are neutral at higher pH values. This study aimed to prepare pH-sensitive colloidal amphiphilic poly(vinyl alcohol-2-hydroxyethyl methacrylate) (PVA-PHEMA) copolymers in cancer therapy applications. For this purpose, poly(vinyl acetate-2-hydroxyethyl methacrylate) (PVAc-PHEMA) copolymer nanoparticles were synthesized in different polymerization medium fractions from water and methanol and different monomer feed concentration. Then acetate groups were hydrolyzed, and the PHEMA-PVA nanoparticles were synthesized. The nanoparticles were further characterized using dynamic light scattering, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis to identify the structural and morphological changes. The Methotrexate (MTX) was loaded into the nanoparticles, and drug release kinetics were evaluated. The results confirmed that PHEMA-PVA copolymeric nanoparticles could be favorably used in cancer therapy.
Collapse
Affiliation(s)
- Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
- Burn and Regenerative Medicine Research center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohsen Hajikhani
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, PO Box 43841-119, Guilan, Rezvanshar, Iran
| | - Leila Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amitis Aghelinejad
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Shahrousvand
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169-13817, Iran
| |
Collapse
|