1
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|
2
|
Yu F, Wang H, Zhao Y, Liu R, Dou Q, Dong J, Wang T. Karyotypic evolution of the Medicago complex: sativa-caerulea-falcata inferred from comparative cytogenetic analysis. BMC Evol Biol 2017; 17:104. [PMID: 28427346 PMCID: PMC5399346 DOI: 10.1186/s12862-017-0951-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy plays an important role in the adaptation and speciation of plants. The alteration of karyotype is a significant event during polyploidy formation. The Medicago sativa complex includes both diploid (2n = 2× = 16) and tetraploid (2n = 2× = 32) subspecies. The tetraploid M. ssp. sativa was regarded as having a simple autopolyploid origin from diploid ssp. caerulea, whereas the autopolyploid origin of tetraploid ssp. falcata from diploid form ssp. falcata is still in doubt. In this study, detailed comparative cytogenetic analysis between diploid to tetraploid species, as well as genomic affinity across different species in the M. sativa complex, were conducted based on comparative mapping of 11 repeated DNA sequences and two rDNA sequences by a fluorescence in situ hybridization (FISH) technique. RESULTS FISH patterns of the repeats in diploid subspecies caerulea were highly similar to those in tetraploid subspecies sativa. Distinctly different FISH patterns were first observed in diploid ssp. falcata, with only centromeric hybridizations using centromeric and multiple region repeats and a few subtelomeric hybridizations using subtelomeric repeats. Tetraploid subspecies falcata was unexpectedly found to possess a highly variable karyotype, which agreed with neither diploid ssp. falcata nor ssp. sativa. Reconstruction of chromosome-doubling process of diploid ssp. caerulea showed that chromosome changes have occurred during polyploidization process. CONCLUSIONS The comparative cytogenetic results provide reliable evidence that diploid subspecies caerulea is the direct progenitor of tetraploid subspecies sativa. And autotetraploid ssp. sativa has been suggested to undergo a partial diploidization by the progressive accumulation of chromosome structural rearrangements during evolution. However, the tetraploid subspecies falcata is far from a simple autopolyploid from diploid subspecies falcata although no obvious morphological change was observed between these two subspecies.
Collapse
Affiliation(s)
- Feng Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yanyan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruijuan Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|