1
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
2
|
Salih R, Bajou K, Shaker B, Elgamouz A. Antitumor effect of algae silver nanoparticles on human triple negative breast cancer cells. Biomed Pharmacother 2023; 168:115532. [PMID: 37832405 DOI: 10.1016/j.biopha.2023.115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, metallic nanoparticles have gained increasing attention due to their prospective applications in the field of nanomedicine, with increasing research into their use in cancer therapy. In this current research, we investigated the effect of green synthesized Silver Nanoparticles (AgNPs) capped with Noctiluca scintillans algae extract. The phytochemicals present in the shell of AgNPs were identified using GC-MS. Different compounds with anticancer activity such as n-hexadecanoic acid, beta-sitosterol, stigmasterol and palmitic acid were detected among others. The effects of Algae-AgNPs synthesized were tested on MDA-MB-231 human breast cancer cells and HaCat human keratinocyte normal cells. Cell viability assay revealed a time and dose-dependent effect against breast cancer cells with a less potent effect against normal cells. The cell viability reduction is not attributed to a cytotoxic nor an antiproliferative effect of the Algae-AgNPs as attested by LDH release and BrdU incorporation. Algae-AgNPs exhibited an exceptional ability to specifically induce apoptosis in cancer cells and not normal cells. The observed effects are not attributed to the AgNPs, as demonstrated by the lack of impact of the Starch-AgNPs (used as a negative control) on cell survival and apoptosis. In addition to that, we show that Algae-AgNPs significantly reduced tumor cell migration by downregulation of matrix metalloprotease-9 levels. In vivo, the breast cancer xenograft model showed a significant reduction of tumor growth in mice treated with Algae-AgNPs. These findings highlight the promising potential of the green synthesized AgNPs as a safe targeted therapy for cancer treatment.
Collapse
Affiliation(s)
- Rawan Salih
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Baraah Shaker
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics and Stem Cells Research Group, Research Institute of Science and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Taniya S, Khanra S, Bhowmik AD, Bandyopadhyay A, Chatterjee S, Chattopadhyay A, Das D. A New Fe(III) Complex Derived from Cyclohexane Based Imine Derivative: Studies on H
2
PO
4
−
Recognition and Anti‐Cancer Activity Against MCF7 and MDA‐MB‐231 Human Breast Cancer Cells. ChemistrySelect 2023. [DOI: 10.1002/slct.202203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seikh Taniya
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| | - Somnath Khanra
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
- Department of Chemistry A. B. N. Seal College Cooch Behar 736101 W.B. India
| | | | - Arindam Bandyopadhyay
- Department of Zoology Visva-Bharati Santiniketan 731235 W. B. India
- Department of Zoology University of Allahabad Prayagraj 211002 U. P. India
| | | | | | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| |
Collapse
|
4
|
Barbasz A, Czyżowska A, Piergies N, Oćwieja M. Design cytotoxicity: The effect of silver nanoparticles stabilized by selected antioxidants on melanoma cells. J Appl Toxicol 2021; 42:570-587. [PMID: 34558088 DOI: 10.1002/jat.4240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Silver nanoparticles (AgNPs) prepared and stabilized by diverse biologically active substances seem to be especially useful in diverse biological and medical applications. The combination of AgNPs with bioactive substances, such as antioxidants, can lead to the development of new systems of desired anticancer properties. In this research, AgNPs were prepared with the use of diverse antioxidant combinations including gallic acid (GA), (-)-epicatechin-3-gallate (EGCG), and caffeine (CAF). The insightful physicochemical characteristic revealed that each type of AgNPs exhibited spherical shape, comparable size distribution and negative surface charge. Surface-enhanced Raman spectroscopy (SERS) delivered the information about the chemistry of AgNP stabilizing layers, which turned out to be a crucial factor tuning toxicity of AgNPs toward murine B16 melanoma cells (B16-F0) and human skin melanoma (COLO 679) cells. EGCGAgNPs were the most cytotoxic among all the investigated AgNPs. They strongly reduced the activity of mitochondria, damaged cell membrane integrity, and penetrated inside the cells causing DNA damage. In turn, the toxicity of GAAgNPs strongly manifested via the induction of oxidative stress in the cells. It was found that CAFGAAgNPs exhibited the lowest toxicity toward the melanoma cells, which proved that a proper combination of antioxidants enable to prepare AgNPs of differentiated toxicity. It was established that human skin melanoma cells were significantly more sensitive to AgNPs than the murine melanoma cells.
Collapse
Affiliation(s)
- Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Krakow, Poland
| | | | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
5
|
Makvandi P, Baghbantaraghdari Z, Zhou W, Zhang Y, Manchanda R, Agarwal T, Wu A, Maiti TK, Varma RS, Smith BR. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol Adv 2021; 48:107711. [PMID: 33592279 DOI: 10.1016/j.biotechadv.2021.107711] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Biopolymers are of prime importance among which gum polysaccharides hold an eminent standing owing to their high availability and non-toxic nature. Gum biopolymers offer a greener alternative to synthetic polymers and toxic chemicals in the synthesis of metal nanostructures. Metal nanostructures accessible via eco-friendly means endow astounding characteristics to gum-based biocomposites in the field of diagnosis and therapy towards cancer diseases. In this review, assorted approaches for the assembly of nanomaterials mediated by gum biopolymers are presented and their utility in cancer diagnosis and therapy, e.g., bioimaging, radiotherapy, and phototherapy, are deliberated to provide a groundwork for future stimulative research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interface, Pontedera 56025, Pisa, Italy.
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Wenxian Zhou
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Romila Manchanda
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials (RCPTM), Palacky University, Olomouc, Šlechtitelů 11, 783 71, Olomouc, Czech Republic.
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Tăbăran AF, Matea CT, Mocan T, Tăbăran A, Mihaiu M, Iancu C, Mocan L. Silver Nanoparticles for the Therapy of Tuberculosis. Int J Nanomedicine 2020; 15:2231-2258. [PMID: 32280217 PMCID: PMC7127828 DOI: 10.2147/ijn.s241183] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Rapid emergence of aggressive, multidrug-resistant Mycobacteria strain represents the main cause of the current antimycobacterial-drug crisis and status of tuberculosis (TB) as a major global health problem. The relatively low-output of newly approved antibiotics contributes to the current orientation of research towards alternative antibacterial molecules such as advanced materials. Nanotechnology and nanoparticle research offers several exciting new-concepts and strategies which may prove to be valuable tools in improving the TB therapy. A new paradigm in antituberculous therapy using silver nanoparticles has the potential to overcome the medical limitations imposed in TB treatment by the drug resistance which is commonly reported for most of the current organic antibiotics. There is no doubt that AgNPs are promising future therapeutics for the medication of mycobacterial-induced diseases but the viability of this complementary strategy depends on overcoming several critical therapeutic issues as, poor delivery, variable intramacrophagic antimycobacterial efficiency, and residual toxicity. In this paper, we provide an overview of the pathology of mycobacterial-induced diseases, andhighlight the advantages and limitations of silver nanoparticles (AgNPs) in TB treatment.
Collapse
Affiliation(s)
- Alexandru-Flaviu Tăbăran
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Cristian Tudor Matea
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Teodora Mocan
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Tăbăran
- Department of Public Health and Food Hygiene, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Marian Mihaiu
- Department of Public Health and Food Hygiene, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Third Surgery Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|