1
|
Revuelta M, Santaolalla F, Arteaga O, Alvarez A, Sánchez-del-Rey A, Hilario E. Recent advances in cochlear hair cell regeneration-A promising opportunity for the treatment of age-related hearing loss. Ageing Res Rev 2017; 36:149-155. [PMID: 28414155 DOI: 10.1016/j.arr.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023]
Abstract
The objective of this paper is to review current information regarding the treatment of age-related hearing loss by using cochlear hair cell regeneration. Recent advances in the regeneration of the inner ear, including the usefulness of stem cells, are also presented. Based on the current literature, cochlear cell regeneration may well be possible in the short term and cochlear gene therapy may also be useful for the treatment of hearing loss associated with ageing. The present review provide further insight into the pathogenesis of Inner Ear senescence and aged-related hearing loss and facilitate the development of therapeutic strategies to repair hair cells damaged by ageing. More research will be needed in order to translate them into an effective treatment for deafness linked to cochlear senescence in humans.
Collapse
|
2
|
Luginbühl J, Sivaraman DM, Shin JW. The essentiality of non-coding RNAs in cell reprogramming. Noncoding RNA Res 2017; 2:74-82. [PMID: 30159423 PMCID: PMC6096403 DOI: 10.1016/j.ncrna.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
In mammals, short (mi-) and long non-coding (lnc) RNAs are immensely abundant and they are proving to be more functional than ever before. Particularly in cell reprogramming, non-coding RNAs are essential to establish the pluripotent network and are indispensable to reprogram somatic cells to pluripotency. Through systematic screening and mechanistic studies, diverse functional features of both miRNA and lncRNAs have emerged as either scaffolds, inhibitors, or co-activators, necessary to orchestrate the intricacy of gene regulation. Furthermore, the collective characterizations of both miRNA and lncRNA reveal their interdependency (e.g. sequestering the function of the other) to modulate cell reprogramming. This review broadly explores the regulatory processes of cell reprogramming - with key functional examples in neuronal and cardiac differentiations - in the context of both short and long non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
3
|
Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 2016; 17:424-37. [PMID: 27194476 DOI: 10.1038/nrn.2016.46] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The scarcity of live human brain cells for experimental access has for a long time limited our ability to study complex human neurological disorders and elucidate basic neuroscientific mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from virtually any human individual. The growth of methods to generate more robust and defined neural cell types through reprogramming and direct conversion into induced neurons has led to the establishment of various human reprogramming-based neural disease models.
Collapse
|
4
|
Sun Q, Weinger JG, Mao F, Liu G. Regulation of structural and functional synapse density by L-threonate through modulation of intraneuronal magnesium concentration. Neuropharmacology 2016; 108:426-39. [PMID: 27178134 DOI: 10.1016/j.neuropharm.2016.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022]
Abstract
Oral administration of the combination of L-threonate (threonate) and magnesium (Mg(2+)) in the form of L-Threonic acid Magnesium salt (L-TAMS) can enhance learning and memory in young rats and prevent memory decline in aging rats and in Alzheimer's disease model mice. Recent results from a human clinical trial demonstrate the efficacy of L-TAMS in restoring global cognitive abilities of older adults. Previously, we reported that neuronal intracellular Mg(2+) serves as a critical signaling molecule for controlling synapse density, a key factor that determines cognitive ability. The elevation of brain Mg(2+) by oral administration of L-TAMS in intact animals plays a significant role in mediating the therapeutic effects of L-TAMS. The current study sought to elucidate the unique role of threonate. We aimed to understand if threonate acts directly to elevate intraneuronal Mg(2+), and why Mg(2+) given without threonate is ineffective for enhancing learning and memory ability. We discovered that threonate is naturally present in cerebrospinal fluid (CSF) and oral treatment with L-TAMS elevated CSF threonate. In cultured hippocampal neurons, threonate treatment directly induced an increase in intracellular Mg(2+) concentration. Functionally, elevating threonate upregulated expression of NR2B-containing NMDAR, boosted mitochondrial membrane potential (ΔΨm), and increased functional synapse density in neuronal cultures. These effects are unique to threonate, as other common Mg(2+) anions failed to have the same results. Mechanistically, threonate's effects were specifically mediated through glucose transporters (GLUTs). We also evaluated the effects of threonate in human neural stem cell-derived neurons, and found it was equally effective at upregulating synapse density. The current study provides an explanation for why threonate is an essential component of L-TAMS and supports the use of L-TAMS to promote cognitive abilities in human.
Collapse
Affiliation(s)
- Qifeng Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | | | - Fei Mao
- Neurocentria, Inc., Fremont, CA 94538, USA
| | - Guosong Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China; Neurocentria, Inc., Fremont, CA 94538, USA.
| |
Collapse
|
5
|
Zhao Z, Xu M, Wu M, Tian X, Zhang C, Fu X. Transdifferentiation of Fibroblasts by Defined Factors. Cell Reprogram 2015; 17:151-9. [PMID: 26053515 DOI: 10.1089/cell.2014.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular differentiation is usually considered to be an irreversible process during development due to robust lineage commitment. Feedback and feed-forward loops play a significant role in maintaining lineage-specific gene expression processes in various cell types, and, in turn, factors secreted by cells may regulate the homeostatic balance of these cycles during development and differentiation. The output of biological responses is controlled by such mechanisms in many regulatory pathways through gene networks involved in transcription, RNA metabolism, signal transduction, micromolecular synthesis, and degradation. The pluripotent stage during cellular conversion may be avoided through ectopic expression of lineage-specific factors. Lineage-specific transcription factors produced during development may strengthen cell type-specific gene expression patterns. Cellular phenotypes are further stabilized by epigenetic modifications. This reprogramming approach could have important implications for disease modeling and regenerative and personalized medicine.
Collapse
Affiliation(s)
- Zhiliang Zhao
- 1 Would Healing and Cell Biology Laboratory, Institute of Basic Medical Science, General Hospital of PLA , Beijing 10853, PR China .,2 Department of Plastic Surgery, General Hospital of The Second Artillery Corps , Beijing 100088, PR China .,6 These authors contributed equally to this work
| | - Mengyao Xu
- 3 Department of Gynecology and Obstetrics, General Hospital of Shenyang Military Region , Shenyang 110000, PR China .,6 These authors contributed equally to this work
| | - Meng Wu
- 4 Department of Plastic Surgery, General Hospital of PLA , Beijing 100853, PR China
| | - Xiaocheng Tian
- 2 Department of Plastic Surgery, General Hospital of The Second Artillery Corps , Beijing 100088, PR China
| | - Cuiping Zhang
- 5 Key Laboratory of Wound Repair and Regeneration of PLA, The First Affiliated Hospital, General Hospital of PLA , Beijing 100048, PR China
| | - Xiaobing Fu
- 5 Key Laboratory of Wound Repair and Regeneration of PLA, The First Affiliated Hospital, General Hospital of PLA , Beijing 100048, PR China
| |
Collapse
|
6
|
Ikegame Y, Yamashita K, Nakashima S, Nomura Y, Yonezawa S, Asano Y, Shinoda J, Hara H, Iwama T. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front Cell Neurosci 2014; 8:322. [PMID: 25374506 PMCID: PMC4204523 DOI: 10.3389/fncel.2014.00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are believed to be promising for cell administration therapy after ischemic stroke. Because of their advantageous characteristics, such as ability of differentiation into neurovascular lineages, avoidance of immunological problems, and abundance of graft cells in mesodermal tissues, studies regarding MSC therapy have increased recently. However, several controversies are yet to be resolved before a worldwide consensus regarding a standard protocol is obtained. In particular, the neuroprotective effects, the rate of cell migration to the lesion, and differentiation direction differ depending on preclinical observations. Analyses of these differences and application of recent developments in stem cell biology or engineering in imaging modality may contribute to identification of criteria for optimal stem cell therapy in which reliable protocols, which control cell quality and include safe administration procedures, are defined for each recovery phase after cerebral ischemia. In this mini review, we examine controversies regarding the fate of grafts and the prospects for advanced therapy that could be obtained through recent developments in stem cell research as direct conversion to neural cells.
Collapse
Affiliation(s)
- Yuka Ikegame
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Kentaro Yamashita
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan ; Department of Neurosurgery, Murakami Memorial Hospital, Asahi University Gifu, Japan
| | - Shigeru Nakashima
- Department of Cell Signaling, Gifu University Graduate School of Medicine Gifu, Japan
| | - Yuichi Nomura
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Shingo Yonezawa
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan
| | - Yoshitaka Asano
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Jun Shinoda
- Department of Neurosurgery, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction Gifu, Japan ; Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University Gifu, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine Gifu, Japan
| |
Collapse
|
7
|
Choi KA, Hwang I, Park HS, Oh SI, Kang S, Hong S. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease. Biotechnol J 2014; 9:882-94. [PMID: 24827816 DOI: 10.1002/biot.201300560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by progressive loss of neurons in the striatum, a sub-cortical region of the forebrain. The sub-cortical region of the forebrain is associated with the control of movement and behavior, thus HD initially presents with coordination difficulty and cognitive decline. Recent reprogramming technologies, including induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), have created opportunities to understand the pathological cascades that underlie HD and to develop new treatments for this currently incurable neurological disease. The ultimate objectives of stem cell-based therapies for HD are to replace lost neurons and to prevent neuronal dysfunction and death. In this review, we examine the current understanding of the molecular and pathological mechanisms involved in HD. We discuss disease modeling with HD-iPSCs derived from the somatic cells of patients, which could provide an invaluable platform for understanding HD pathogenesis. We speculate about the benefits and drawbacks of using iNSCs as an alternative stem cell source for HD treatment. Finally, we discuss cell culture and engineering systems that promote the directed differentiation of pluripotent stem cell-derived NSCs into a striatal DARPP32(+) GABAergic MSN phenotype for HD. In conclusion, this review summarizes the potentials of cell reprogramming and engineering technologies relevant to the development of cell-based therapies for HD.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea; Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Raitano S, Verfaillie CM, Petryk A. Self-renewal of neural stem cells: implications for future therapies. Front Physiol 2013; 4:49. [PMID: 23513073 PMCID: PMC3600572 DOI: 10.3389/fphys.2013.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
|