1
|
Song J, Yu Y, Yan Z, Xiao S, Zhao X, Wang F, Fang Q, Ye G. Chloride intracellular channel gene knockdown induces insect cell lines death and level increases of intracellular calcium ions. Front Physiol 2023; 14:1217954. [PMID: 37485065 PMCID: PMC10356983 DOI: 10.3389/fphys.2023.1217954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Chloride intracellular channel (CLIC) is a member of the chloride channel protein family for which growing evidence supports a pivotal role in fundamental cellular events. However, the physiological function of CLIC in insects is still rarely uncovered. The ovary-derived High Five (Hi-5) cell line isolated from the cabbage looper (Trichoplusia ni) is widely used in laboratories. Here, we studied both characteristics and functions of CLIC in Hi-5 cells (TnCLIC). We identified the TnCLIC gene in Hi-5 cells and annotated highly conserved CLIC proteins in most insect species. After RNA interference of TnCLIC, the phenomenon of significantly increased cell death suggests that the TnCLIC protein is essential for the survival of Hi-5 cells. The same lethal effect was also observed in Spodoptera frugiperda 9 and Drosophila melanogaster Schneider 2 cells after CLIC knockdown. Furthermore, we found that this kind of cell death was accompanied by increases in intracellular calcium ions after TnCLIC knockdown with the transcriptomic analyses and the detection of calcium levels. Our results provide insights into insect CLIC as a key factor for cell survival and lay the foundation for the cell death mechanism.
Collapse
Affiliation(s)
- Jiqiang Song
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yanping Yu
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Harnischfeger J, Beutler M, Salzig D, Rahlfs S, Becker K, Grevelding CG, Czermak P. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Vorgia E, Lamprousi M, Denecke S, Vogelsang K, Geibel S, Vontas J, Douris V. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103510. [PMID: 33276037 DOI: 10.1016/j.ibmb.2020.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Insect cell lines have been frequently used in insect science research in recent years. Establishment of cell lines from specialized tissues like the lepidopteran midgut is expected to facilitate research efforts towards the understanding of uptake and metabolic properties, as well as the design of assays for use in pesticide discovery. However, the number of available lines from specialized tissues of insects and the level of understanding of the biological processes taking place in insect cells is far behind mammalian systems. In this study we examine two established cell lines of insect midgut origin, investigate their growth parameters and amenability to transfection and genetic manipulation, and test their potential to form spheroid-like 3D structures. Our results indicate that a midgut-derived cell line from Helicoverpa zea, RP-HzGUT-AW1, is amenable to genetic manipulation by transfection with a standard insect expression vector and has excellent ability to form spheroids. To further investigate the differentiation status of this line, we examined for expression of several candidate marker genes from different midgut cell types, enterocytes (ECs), Goblet cells (GCs), enteroendocrine cells (EEs) and intestinal stem cells (ISCs), indicating that both certain ISC and certain differentiated cell markers were present. To acquire a more detailed perspective of the differentiation landscape of the specific cells, we performed an RNAseq analysis of RP-HzGUT-AW1 grown either in 2D or 3D cultures. We hypothesize that RP-HzGUT-AW1 are in an "arrested" developmental stage between ISC and terminal differentiation. Furthermore, an enrichment of stress response and oxidoreductase genes was observed in the spheroid samples while no significant difference was evident in differentiation markers between cells grown in 2D and 3D. These results render RP-HzGUT-AW1 as the most well-characterized insect gut derived cell line so far, and lay the groundwork for future work investigating midgut cell lines application potential.
Collapse
Affiliation(s)
- Elena Vorgia
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Maghodia AB, Geisler C, Jarvis DL. A new nodavirus-negative Trichoplusia ni cell line for baculovirus-mediated protein production. Biotechnol Bioeng 2020; 117:3248-3264. [PMID: 32662870 DOI: 10.1002/bit.27494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Cell lines derived from Trichoplusia ni (Tn) are widely used as hosts in the baculovirus-insect cell system (BICS). One advantage of Tn cell lines is they can produce recombinant proteins at higher levels than cell lines derived from other insects. However, Tn cell lines are persistently infected with an alphanodavirus, Tn5 cell-line virus (TnCLV), which reduces their utility as a host for the BICS. Several groups have isolated TnCLV-negative Tn cell lines, but none were thoroughly characterized and shown to be free of other adventitious viruses. Thus, we isolated and extensively characterized a new TnCLV-negative line, Tn-nodavirus-negative (Tn-NVN). Tn-NVN cells have no detectable TnCLV, no other previously identified viral contaminants of lepidopteran insect cell lines, and no sequences associated with any replicating virus or other viral adventitious agents. Tn-NVN cells tested negative for >60 species of Mycoplasma, Acholeplasma, Spiroplasma, and Ureaplasma. Finally, Tn-NVN cells grow well as a single-cell suspension culture in serum-free medium, produce recombinant proteins at levels similar to High Five™ cells, and do not produce recombinant glycoproteins with immunogenic core α1,3-fucosylation. Thus, Tn-NVN is a new, well-characterized TnCLV-negative cell line with several other features enhancing its utility as a host for the BICS.
Collapse
Affiliation(s)
| | | | - Donald L Jarvis
- GlycoBac, LLC, Laramie, Wyoming.,Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
5
|
Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21673. [PMID: 32212396 DOI: 10.1002/arch.21673] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/29/2023]
Abstract
Three-domain Cry toxins from the bacterium Bacillus thuringiensis (Bt) are increasingly used in agriculture to replace chemical insecticides in pest control. Most chemical insecticides kill pest insects swiftly, but are also toxic to beneficial insects and other species in the agroecosystem. Cry toxins enjoy the advantages of high selectivity and the possibility of the application by sprays or transgenic plants. However, these benefits are offset by the limited host range and the evolution of resistance to Bt toxins by insect pests. Understanding how Bt toxins kill insects will help to understand the nature of both problems. The recent realization that ABC transporters play a central role in the killing mechanism will play an important role in devising solutions.
Collapse
Affiliation(s)
- David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Shu B, Zhang J, Zeng J, Cui G, Zhong G. Stability of selected reference genes in Sf9 cells treated with extrinsic apoptotic agents. Sci Rep 2019; 9:14147. [PMID: 31578389 PMCID: PMC6775146 DOI: 10.1038/s41598-019-50667-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
As a tightly controlled cell death process, apoptosis eliminates unwanted cells and plays a vital role in multicellular organisms. Previous study have demonstrated that apoptosis occurred in Spodoptera frugiperda cultured Sf9 cells, which triggered by diverse apoptotic stimuli, including azadirachtin, camptothecin and ultraviolet. Due to its simplicity, high sensitivity and reliable specificity, RT-qPCR has been used widespread for analyzing expression levels of target genes. However, the selection of reference genes influences the accuracy of results profoundly. In this study, eight genes were selected for analyses of their suitability as references for normalizing RT-PCR data in Sf9 cells treated with apoptotic agents. Five algorithms, including NormFinder, BestKeeper, Delta Ct method, geNorm, and RefFinder, were used for stability ranking. Based on comprehensively analysis, the expression stability of selected genes varied in cells with different apoptotic stimuli. The best choices for cells under different apoptosis conditions were listed: EF2 and EF1α for cells treated with azadirachtin; RPL13 and RPL3 for cells treated with camptothecin; EF1α and β-1-TUB for cells irradiated under ultraviolet; and EF1α and EF2 for combinational analyses of samples. Our results not only facilitate a more accurate normalization for RT-qPCR data, but also provide the reliable assurance for further studies of apoptotic mechanisms under different stimulus in Sf9 cells.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Zeng
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China. .,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Talsania K, Mehta M, Raley C, Kriga Y, Gowda S, Grose C, Drew M, Roberts V, Cheng KT, Burkett S, Oeser S, Stephens R, Soppet D, Chen X, Kumar P, German O, Smirnova T, Hautman C, Shetty J, Tran B, Zhao Y, Esposito D. Genome Assembly and Annotation of the Trichoplusia ni Tni-FNL Insect Cell Line Enabled by Long-Read Technologies. Genes (Basel) 2019; 10:genes10020079. [PMID: 30678108 PMCID: PMC6409714 DOI: 10.3390/genes10020079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Trichoplusia ni derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusia ni-derived cell line Tni-FNL. Methods: By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL. Results: Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL genome resulted in 14,101 predicted genes and 93.2% of the predicted proteome contained recognizable protein domains. Ortholog searches within the superorder Holometabola provided further evidence of high accuracy and completeness of the Tni-FNL genome assembly. Conclusions: This first draft Tni-FNL genome assembly was enabled by complementary long-read technologies and represents a high-quality, well-annotated genome that provides novel insight into the complexity of this insect cell line and can serve as a reference for future large-scale genome engineering work in this and other similar recombinant protein production hosts.
Collapse
Affiliation(s)
- Keyur Talsania
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Monika Mehta
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Castle Raley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yuliya Kriga
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sujatha Gowda
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Carissa Grose
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Matthew Drew
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Veronica Roberts
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Kwong Tai Cheng
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | | | - Robert Stephens
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Daniel Soppet
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Xiongfeng Chen
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Parimal Kumar
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Oksana German
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Tatyana Smirnova
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Christopher Hautman
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Jyoti Shetty
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Bao Tran
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Yongmei Zhao
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| | - Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|
8
|
Zhao Z, Wang L, Yue D, Ye B, Li P, Zhang B, Fan Q. Evaluation of Reference Genes for Normalization of RT-qPCR Gene Expression Data for Trichoplusia ni Cells During Antheraea pernyi (Lepidoptera: Saturniidae) Multicapsid Nucleopolyhedrovirus (AnpeNPV) Infection. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5280859. [PMID: 30624703 PMCID: PMC6324657 DOI: 10.1093/jisesa/iey133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Indexed: 06/01/2023]
Abstract
Baculovirus infection impacts global gene expression in the host cell, including the expression of housekeeping genes. Evaluation of candidate reference genes during a viral infection will inform the selection of appropriate reference gene(s) for the normalization of expression data generated by Reverse Transcription Quantitative Real-timePolymerase Chain Reaction (RT-qPCR). Antheraea pernyi multicapsid nucleopolyhedrovirus (AnpeNPV) is able to infect the High Five cells (Tn-Hi5). In the present study, 10 candidate reference genes were evaluated in AnpeNPV-infected Tn-Hi5 cells. Gene expression data were analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. The candidate genes were further validated as reliable reference genes for RT-qPCR by analyzing the expression of three target genes. The results of data analysis using four statistical methods showed that RPS18 was the least stable among the candidate reference genes tested. 18S rRNA and 28S rRNA were not suitable as reference genes for RT-qPCR analysis in AnpeNPV-infected Tn-Hi5 cells. Comprehensive ranking of the 10 candidate reference genes by RefFinder analysis indicated that Ann B, c45128_g1, and ACT were the top three genes. Normalization of the expression of three target genes using the candidate reference genes indicated the same expression pattern when Ann B and c45128_g1 were used as reference genes, with slight differences in the relative expression at each infection time point. Overall, Ann B and c45128_g1 were recommended to be more suitable than the most commonly used reference genes, such as ACT, GAPDH, and TUB, for RT-qPCR data normalization in AnpeNPV-infected Tn-Hi5 cells up to 48 hpi.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Linmei Wang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Dongmei Yue
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Bo Ye
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Peipei Li
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Bo Zhang
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| | - Qi Fan
- Dalian Institute of Biotechnology, Liaoning Academy of Agricultural Sciences, Dalian, P. R. China
| |
Collapse
|
9
|
He W, Wang Y, Chen Q, Sun B, Tang HR, Pan DM, Wang XR. Dissection of the Mechanism for Compatible and Incompatible Graft Combinations of Citrus grandis (L.) Osbeck ('Hongmian Miyou'). Int J Mol Sci 2018; 19:E505. [PMID: 29419732 PMCID: PMC5855727 DOI: 10.3390/ijms19020505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 01/09/2023] Open
Abstract
'Hongmian miyou' (Citrus grandis L. Osbeck) is mutated from 'Guanxi miyou', with a different spongy layer coloration. Trifoliate orange (Poncirus trifoliata) is widely used as rootstocks in 'Guanxi miyou' grafting, whereas 'Hongmian miyou' is incompatible with available trifoliate orange rootstocks. To explore the reasons for the etiolation of leaves of 'Hongmian miyou'/trifoliate orange, anatomical differences among different graft unions, gene expression profiles, and auxin levels of scion were investigated in this study. A histological assay indicated that there was no significant difference in anatomical structure between the compatible and incompatible combinations. A total of 1950 significant differentially-expressed genes (DEGs) were identified and analyzed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that genes involved in carbohydrate metabolism, energy metabolism, amino acid metabolism, and plant hormone signal transduction were significantly enriched. Moreover, the expression of nine genes in the auxin pathway were upregulated and three were downregulated in compatible combinations compared with those in the incompatible group. Further experiments verified that indole-3-acetic acid (IAA) content increases in the compatible graft combination, which suggests that IAA might promote graft compatibility.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dong-Ming Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiao-Rong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Vimercati S, Büchi M, Zielinski J, Peduto N, Mevissen M. Testosterone metabolism of equine single CYPs of the 3A subfamily compared to the human CYP3A4. Toxicol In Vitro 2017; 41:83-91. [DOI: 10.1016/j.tiv.2017.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
11
|
The underestimated N-glycomes of lepidopteran species. Biochim Biophys Acta Gen Subj 2017; 1861:699-714. [PMID: 28077298 DOI: 10.1016/j.bbagen.2017.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. METHODS Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. RESULTS We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. CONCLUSION The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. SIGNIFICANCE The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production.
Collapse
|