1
|
Restier-Verlet J, Ferlazzo ML, Granzotto A, Al-Choboq J, Bellemou C, Estavoyer M, Lecomte F, Bourguignon M, Pujo-Menjouet L, Foray N. Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1-5 Weeks in International Space Station. Cells 2024; 13:1703. [PMID: 39451221 PMCID: PMC11506070 DOI: 10.3390/cells13201703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Radiation impacting astronauts in their spacecraft come from a "bath" of high-energy rays (0.1-0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a "stochastic rain" of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1-5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration.
Collapse
Affiliation(s)
- Juliette Restier-Verlet
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Mélanie L. Ferlazzo
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Adeline Granzotto
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Joëlle Al-Choboq
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Camélia Bellemou
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| | - Maxime Estavoyer
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Florentin Lecomte
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Michel Bourguignon
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay, Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Universite Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France; (M.E.); (F.L.); (L.P.-M.)
| | - Nicolas Foray
- INSERM U1296 Unit “Radiation: Defense, Health, Environment”, 28 Rue Laennec, 69008 Lyon, France; juliette.restier-- (J.R.-V.); (M.L.F.); (A.G.); (J.A.-C.); (C.B.); (M.B.)
| |
Collapse
|
2
|
He X, Zhao L, Huang B, Zhang G, Lu Y, Mi D, Sun Y. Integrated analysis of miRNAome and transcriptome reveals that microgravity induces the alterations of critical functional gene modules via the regulation of miRNAs in short-term space-flown C. elegans. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:117-132. [PMID: 39067983 DOI: 10.1016/j.lssr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.
Collapse
Affiliation(s)
- Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ge Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Ye Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, PR China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.
| |
Collapse
|
3
|
Zhao Y, Zhong G, Du R, Zhao D, Li J, Li Y, Xing W, Jin X, Zhang W, Sun W, Liu C, Liu Z, Yuan X, Kan G, Han X, Li Q, Chang YZ, Li Y, Ling S. Ckip-1 3′-UTR Attenuates Simulated Microgravity-Induced Cardiac Atrophy. Front Cell Dev Biol 2022; 9:796902. [PMID: 35186951 PMCID: PMC8847737 DOI: 10.3389/fcell.2021.796902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity prominently affected cardiovascular health, which was the gravity-dependent physical factor. Deep space exploration had been increasing in frequency, but heart function was susceptible to conspicuous damage and cardiac mass declined in weightlessness. Understanding of the etiology of cardiac atrophy exposed to microgravity currently remains limited. The 3′-untranslated region (UTR) of casein kinase-2 interacting protein-1 (Ckip-1) was a pivotal mediator in pressure overload-induced cardiac remodeling. However, the role of Ckip-1 3′-UTR in the heart during microgravity was unknown. We analyzed Ckip-1 mRNA 3′-UTR and coding sequence (CDS) expression levels in ground-based analogs such as mice hindlimb unloading (HU) and rhesus monkey head-down bed rest model. Ckip-1 3′-UTR had transcribed levels in the opposite change trend with cognate CDS expression in the hearts. We then subjected wild-type (WT) mice and cardiac-specific Ckip-1 3′-UTR-overexpressing mice to hindlimb unloading for 28 days. Our results uncovered that Ckip-1 3′-UTR remarkably attenuated cardiac dysfunction and mass loss in simulated microgravity environments. Mechanistically, Ckip-1 3′-UTR inhibited lipid accumulation and elevated fatty acid oxidation-related gene expression in the hearts through targeting calcium/calmodulin-dependent kinase 2 (CaMKK2) and activation of the AMPK-PPARα-CPT1b signaling pathway. These findings demonstrated Ckip-1 3′-UTR was an important regulator in atrophic heart growth after simulated microgravity.
Collapse
Affiliation(s)
- Yinglong Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Yan-Zhong Chang, ; Yingxian Li, ; Shukuan Ling,
| |
Collapse
|
4
|
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021; 7:35. [PMID: 34556658 PMCID: PMC8460669 DOI: 10.1038/s41526-021-00162-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.
Collapse
Affiliation(s)
- Xavier Gómez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Cornell University, Ithaca, NY, USA
- Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Samira Asquel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Mariuxi Bassantes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Julián E Morales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Gabriela Otáñez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Core Pomaquero
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Sarah Villarroel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Alejandro Zurita
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Carlos Calvache
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Kathlyn Celi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Terry Contreras
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Dylan Corrales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - María Belén Naciph
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - José Peña
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador.
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador.
- Mito-Act Research Consortium, Quito, Ecuador.
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
5
|
Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in Space: What Does It Change? Int J Mol Sci 2021; 22:3739. [PMID: 33916740 PMCID: PMC8038356 DOI: 10.3390/ijms22073739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
After having been an instrument of the Cold War, space exploration has become a major technological, scientific and societal challenge for a number of countries. With new projects to return to the Moon and go to Mars, radiobiologists have been called upon to better assess the risks linked to exposure to radiation emitted from space (IRS), one of the major hazards for astronauts. To this aim, a major task is to identify the specificities of the different sources of IRS that concern astronauts. By considering the probabilities of the impact of IRS against spacecraft shielding, three conclusions can be drawn: (1) The impacts of heavy ions are rare and their contribution to radiation dose may be low during low Earth orbit; (2) secondary particles, including neutrons emitted at low energy from the spacecraft shielding, may be common in deep space and may preferentially target surface tissues such as the eyes and skin; (3) a "bath of radiation" composed of residual rays and fast neutrons inside the spacecraft may present a concern for deep tissues such as bones and the cardiovascular system. Hence, skin melanoma, cataracts, loss of bone mass, and aging of the cardiovascular system are possible, dependent on the dose, dose-rate, and individual factors. This suggests that both radiosusceptibility and radiodegeneration may be concerns related to space exploration. In addition, in the particular case of extreme solar events, radiosensitivity reactions-such as those observed in acute radiation syndrome-may occur and affect blood composition, gastrointestinal and neurologic systems. This review summarizes the specificities of space radiobiology and opens the debate as regards refinements of current radiation protection concepts that will be useful for the better estimation of risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicolas Foray
- Inserm, U1296 Unit, «Radiation: Defense, Health and Environment», Centre Léon-Bérard, 28, Rue Laennec, 69008 Lyon, France; (J.R.-V.); (L.E.-N.); (M.L.F.); (J.A.-C.); (A.G.); (A.B.)
| |
Collapse
|
6
|
Zhu L, Nie L, Xie S, Li M, Zhu C, Qiu X, Kuang J, Liu C, Lu C, Li W, Meng E, Zhang D, Zhu L. Attenuation of Antiviral Immune Response Caused by Perturbation of TRIM25-Mediated RIG-I Activation under Simulated Microgravity. Cell Rep 2021; 34:108600. [PMID: 33406425 DOI: 10.1016/j.celrep.2020.108600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology. RNA sequencing analysis demonstrates that the retinoic-acid-inducible gene (RIG)-I-like receptor (RLR) and the Toll-like receptor (TLR) signaling pathways are significantly compromised by simulated microgravity (Sμg). TRIM25, an essential E3 for RLR signaling, is inhibited under Sμg, hampering the K63-linked ubiquitination of RIG-I and the following function-induction positive feedback loop of antiviral immune response. These mechanisms provide insights into better understanding of the effects and principles of microgravity on host antiviral immunity and present broad potential implications for developing strategies that can prevent and control viral diseases during space flight.
Collapse
Affiliation(s)
- Lvyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, P.R. China
| | - Sisi Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Ming Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chushu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Jingyu Kuang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Chenyu Lu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Wenying Li
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Er Meng
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, P.R. China.
| |
Collapse
|
7
|
Lei X, Cao Y, Ma B, Zhang Y, Ning L, Qian J, Zhang L, Qu Y, Zhang T, Li D, Chen Q, Shi J, Zhang X, Ma C, Zhang Y, Duan E. Development of mouse preimplantation embryos in space. Natl Sci Rev 2020; 7:1437-1446. [PMID: 34691539 PMCID: PMC8288510 DOI: 10.1093/nsr/nwaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
The development of life beyond planet Earth is a long-standing quest of the human race, but whether normal mammalian embryonic development can occur in space is still unclear. Here, we show unequivocally that preimplantation mouse embryos can develop in space, but the rate of blastocyst formation and blastocyst quality are compromised. Additionally, the cells in the embryo contain severe DNA damage, while the genome of the blastocysts developed in space is globally hypomethylated with a unique set of differentially methylated regions. The developmental defects, DNA damage and epigenetic abnormalities can be largely mimicked by the treatment with ground-based low-dose radiation. However, the exposure to simulated microgravity alone does not cause major disruptions of embryonic development, indicating that radiation is the main cause for the developmental defects. This work advances the understanding of embryonic development in space and reveals long-term extreme low-dose radiation as a hazardous factor for mammalian reproduction.
Collapse
Affiliation(s)
- Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujing Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University/Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling 712100, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Zhang
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 100049, China
| | - Dehong Li
- Division of Ionizing Radiation, National Institute of Metrology, Beijing 100029, China
| | - Qi Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junchao Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chiyuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|