1
|
Wang Q, Qin Y, Li B. CD8 + T cell exhaustion and cancer immunotherapy. Cancer Lett 2023; 559:216043. [PMID: 36584935 DOI: 10.1016/j.canlet.2022.216043] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Immunotherapy plays an increasingly important role in the treatment of most malignant tumors, and CD8+ T cells are the most important antitumor effector cells in the process of immunotherapy, and their number and functional status largely determine the antitumor effect. However, under continuous antigen exposure and the stimulation of inflammatory factors, CD8+ T cells gradually show a weakened proliferation and effector function, accompanied by the expression of a variety of inhibitory receptors. This state is known as CD8+ T cell "exhaustion" and often leads to the loss of control and progression of tumors. Recent studies provided us a better understanding of the mechanisms of T cell exhaustion, this review provides an overview of the activation, exhaustion mechanisms and exhaustion characteristics of CD8+ T cells. Although immunotherapy can reverse the exhaustion of CD8+ T cells and significantly improve the antitumor effects, single immunotherapy often has limitations, and it is difficult to achieve satisfactory antitumor effects, therefore, this review also summarizes up-to-date information related to cancer immunotherapy, and these emerging insights provide promising clues to the future management of malignant tumors.
Collapse
Affiliation(s)
- Qingda Wang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China.
| |
Collapse
|
2
|
Liao G, Tang J, Bai J. Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett 2023; 555:216047. [PMID: 36587837 DOI: 10.1016/j.canlet.2022.216047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly malignant cancer with poor prognosis, is an example of the classical view of cancer development based on stem cell origin and multistep progression. In the past five years, the applications of large-scale sequencing and single-cell sequencing have expanded to human esophageal normal tissues and precancerous lesions, which, coupled with the application of transgenic lineage tracing technology in mouse models, has provided a more comprehensive and detailed understanding of esophageal stem cell heterogeneity and early clonal evolution of ESCC. In this review, we discuss the heterogeneity of esophageal basal-layer stem cells and their potential relationship with cells of ESCC origin. We present evidence that expansion of NOTCH1 mutants may call into play an evolutionarily conserved anti-cancer mechanism and mold the model of early clonal evolution in ESCCs. Finally, we discuss the potential avenues in this context. This review provides a focused understanding of the early development of ESCC, as a background for early tumor detection, intervention, and prevention strategies.
Collapse
Affiliation(s)
- Guobin Liao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jun Tang
- Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jianying Bai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
3
|
Du L, Wang D, Nagle PW, Groen AAH, Zhang H, Muijs CT, Plukker JTM, Coppes RP. Role of mTOR through Autophagy in Esophageal Cancer Stemness. Cancers (Basel) 2022; 14:cancers14071806. [PMID: 35406578 PMCID: PMC9040713 DOI: 10.3390/cancers14071806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is a highly aggressive disease with a poor prognosis. Therapy resistance and early recurrences are major obstacles in reaching a better outcome. Esophageal cancer stem-like cells (CSCs) seem tightly related with chemoradiation resistance, initiating new tumors and metastases. Several oncogenic pathways seem to be involved in the regulation of esophageal CSCs and might harbor novel therapeutic targets to eliminate CSCs. Previously, we identified a subpopulation of EC cells that express high levels of CD44 and low levels of CD24 (CD44+/CD24-), show CSC characteristics and reside in hypoxic niches. Here, we aim to clarify the role of the hypoxia-responding mammalian target of the rapamycin (mTOR) pathway in esophageal CSCs. We showed that under a low-oxygen culture condition and nutrient deprivation, the CD44+/CD24- population is enriched. Since both low oxygen and nutrient deprivation may inhibit the mTOR pathway, we next chemically inhibited the mTOR pathway using Torin-1. Torin-1 upregulated SOX2 resulted in an enrichment of the CD44+/CD24- population and increased sphere formation potential. In contrast, stimulation of the mTOR pathway using MHY1485 induced the opposite effects. In addition, Torin-1 increased autophagic activity, while MHY1485 suppressed autophagy. Torin-1-mediated CSCs upregulation was significantly reduced in cells treated with autophagy inhibitor, hydroxychloroquine (HCQ). Finally, a clearly defined CD44+/CD24- CSC population was detected in EC patients-derived organoids (ec-PDOs) and here, MHY1485 also reduced this population. These data suggest that autophagy may play a crucial role in mTOR-mediated CSCs repression. Stimulation of the mTOR pathway might aid in the elimination of putative esophageal CSCs.
Collapse
Affiliation(s)
- Liang Du
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Graduate School, Shantou University Medical College, Shantou 515041, China
| | - Da Wang
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Peter W. Nagle
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andries A. H. Groen
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Hao Zhang
- Department of Pathology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China;
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Christina T. Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - John Th. M. Plukker
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Robert P. Coppes
- Section Molecular Cell Biology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands; (L.D.); (D.W.); (P.W.N.); (A.A.H.G.)
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
4
|
Hishida T, Vazquez-Ferrer E, Hishida-Nozaki Y, Takemoto Y, Hatanaka F, Yoshida K, Prieto J, Sahu SK, Takahashi Y, Reddy P, O’Keefe DD, Rodriguez Esteban C, Knoepfler PS, Nuñez Delicado E, Castells A, Campistol JM, Kato R, Nakagawa H, Izpisua Belmonte JC. Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Front Cell Dev Biol 2022; 10:786031. [PMID: 35309931 PMCID: PMC8931341 DOI: 10.3389/fcell.2022.786031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of esophageal epithelial cells resulting in cellular senescence while forced MYC expression promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-induced senescence, therefore suggesting that a mitochondrial superoxide takes part in inducing senescence. Taken together, these analyses reveal extremely low levels of cellular senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for studying and understanding the links between stemness and resistance to cellular senescence.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuto Takemoto
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kei Yoshida
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sanjeeb Kumar Sahu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David D. O’Keefe
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ryuji Kato
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- *Correspondence: Juan Carlos Izpisua Belmonte,
| |
Collapse
|