1
|
White NA, Xiao Z, De Winter EP, Li M, De Vries MR, Van Der Bogt KE, Rotmans JI. Hemodynamic considerations in arteriovenous vascular access modalities for hemodialysis. THE JOURNAL OF CARDIOVASCULAR SURGERY 2025; 66:3-16. [PMID: 39612189 DOI: 10.23736/s0021-9509.24.13205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Arteriovenous fistulas and arteriovenous grafts are the most commonly used vascular access for hemodialysis in patients with end-stage chronic kidney disease. However, both methods face significant challenges due to the hemodynamic disturbances induced by the arteriovenous anastomosis. This causes changes in vascular structure and blood flow velocity near the anastomosis site after the fistula/graft surgery, and introduces abnormal wall shear stress and cyclic stretch. This leads to endothelial cell dysfunction, vascular smooth muscle cell proliferation, and adverse remodeling. The resulting effects include low patency rates due to vascular stenosis caused by intimal hyperplasia and insufficient outward remodeling. Additionally, the high flow conduit has been linked to adverse cardiac remodeling. To address this, various strategies have been explored to correct these localized hemodynamic abnormalities, aiming to improve long-term patency rates. In this review, an overview is provided of the current surgical techniques, anastomosis types, anastomosis angles, external scaffolds, modified fistula designs, and types of grafts. It evaluates the impact of these approaches on local hemodynamics in the access conduit and their potential effects on patient outcomes.
Collapse
Affiliation(s)
- Nicholas A White
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands -
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands -
| | - Zhuotao Xiao
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Eduard P De Winter
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Mohan Li
- Division of Endocrinology, Department of Medicine, Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Margreet R De Vries
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Koen E Van Der Bogt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- University Vascular Center West, The Hague, the Netherlands
- Haaglanden Medical Center, The Hague, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Jodko D, Barber T. Fluid-structure interaction in a follow-up study of arterio-venous fistula maturation. Sci Rep 2024; 14:29654. [PMID: 39609573 PMCID: PMC11605128 DOI: 10.1038/s41598-024-80916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysed patients. AVF is created surgically using the patient's artery and vein. Once the connection (anastomosis) is made, the maturation process begins. Studies have shown that most AVFs do not survive beyond one year. This study presents fluid-structure interaction (FSI) modelling of non-Newtonian blood flow through an end-to-side radio-cephalic AVF, investigated weekly during a 15-week follow-up period and 1.5 years postoperatively using ultrasound methods. The aim was to collect qualitative and quantitative data regarding changes in hemodynamics and alterations in the walls of AVF vasculature. Different material properties were assigned to the artery, suture zone (anastomosis), and vein, while the stiffening of the venous arm over time was also modelled. The proposed FSI methodology can be implemented in future follow-up studies involving groups of patients. The main findings revealed: a) counter-rotating vortices in the anastomosis cross-section affecting local pressure conditions; b) different temporal progression of vorticity, shear strain rate, and turbulent kinetic energy and similarity of the temporal progression of WSS obtained under the assumptions of the rigid-walled and FSI; c) a negligible low-WSS zone in the presented thrombosis-free AVF; d) migration of the zone of maximal temporal wall deformation over time.
Collapse
Affiliation(s)
- Daniel Jodko
- Institute of Turbomachinery, Lodz University of Technology, Wolczanska 217/221, 93-005, Lodz, Poland.
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tracie Barber
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Xiao Z, Postma RJ, van Zonneveld AJ, van den Berg BM, Sol WM, White NA, van de Stadt HJ, Mirza A, Wen J, Bijkerk R, Rotmans JI. A bypass flow model to study endothelial cell mechanotransduction across diverse flow environments. Mater Today Bio 2024; 27:101121. [PMID: 38988818 PMCID: PMC11234155 DOI: 10.1016/j.mtbio.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Disturbed flow is one of the pathological initiators of endothelial dysfunction in intimal hyperplasia (IH) which is commonly seen in vascular bypass grafts, and arteriovenous fistulas. Various in vitro disease models have been designed to simulate the hemodynamic conditions found in the vasculature. Nonetheless, prior investigations have encountered challenges in establishing a robust disturbed flow model, primarily attributed to the complex bifurcated geometries and distinctive flow dynamics. In the present study, we aim to address this gap by introducing an in vitro bypass flow model capable of inducing disturbed flow and other hemodynamics patterns through a pulsatile flow in the same model. To assess the model's validity, we employed computational fluid dynamics (CFD) to simulate hemodynamics and compared the morphology and functions of human umbilical venous endothelial cells (HUVECs) under disturbed flow conditions to those in physiological flow or stagnant conditions. CFD analysis revealed the generation of disturbed flow within the model, pinpointing the specific location in the channel where the effects of disturbed flow were observed. High-content screening, a single-cell morphological profile assessment, demonstrated that HUVECs in the disturbed flow area exhibited random orientation, and morphological features were significantly distinct compared to cells in the physiological flow or stagnant condition after a two days of flow exposure. Furthermore, HUVECs exposed to disturbed flow underwent extensive remodeling of the adherens junctions and expressed higher levels of endothelial cell activation markers compared to other hemodynamic conditions. In conclusion, our in vitro bypass flow model provides a robust platform for investigating the associations between disturbed flow pattern and vascular diseases.
Collapse
Affiliation(s)
- Zhuotao Xiao
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Rudmer J. Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Bernard M. van den Berg
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Wendy M.P.J. Sol
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Nicholas A. White
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, Delft, 2628, CN, Netherlands
| | - Huybert J.F. van de Stadt
- Department of Medical Technology, Design & Prototyping, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33199, United States
| | - Jun Wen
- Department of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, 2333, ZA, Netherlands
| |
Collapse
|
4
|
Li X, Ma C, Li W, Li Y, Zhang M, Zhu P. Efficacy and safety of implantable vascular support in the treatment of arteriovenous fistula: A single-arm meta-analyses. J Vasc Access 2024:11297298231223537. [PMID: 38197230 DOI: 10.1177/11297298231223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES VasQ (Laminate Medical Technologies, Israel) is an external support device for autologous arteriovenous fistula (AVF) designed to improve anastomotic blood flow and reduce neointimal hyperplasia. However, different studies have shown that the efficacy of the VasQ device in improving AVF is inconsistent. The purpose of this study was to conduct a meta-analysis to further evaluate the efficacy and safety of the VasQ device. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS Two reviewers independently searched studies published in PubMed, EMBASE, Cochrane, Web of Science, CNKI, and Wan Fang databases from inception to 2023. The Cochrane Systematic Evaluation Bias Risk Tool Version 1 was used to assess the risk of RCTS bias. The ROBINS-I tool was used to assess the risk of bias in non-randomized studies. A Single-arm meta-analysis was performed, and a random effects model was used for all analyses. RESULTS We identified six trials involving 146 patients and conducted a meta-analysis. The results showed that after 6 months of VasQ device treatment, the primary patency rate of AVF was [76.4% (95%CI: 0.608-0.920), p < 0.01] while the secondary patency rate was [76.5% (95%CI: 0.572-0.958), p < 0.01]. The maturity rate of AVF 1 month after surgery was [88.5% (95%CI: 0.818-0.952), p = 0.46]. The incidence of anastomotic stenosis was [8.9% (95%CI: 0.015-0.163), p = 0.23], and the incidence of anastomotic venous thrombosis was [10% (95%CI: 0.035-0.179), p = 0.38]. CONCLUSIONS Meta-analysis data of this study show that the VasQ device has a good effect in improving the patency rate of AVF and does not increase the occurrence of adverse events. However, due to the limitation of the number and quality of included studies, more high-quality studies are needed to confirm this in the future.
Collapse
Affiliation(s)
- Xuanwei Li
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, P.R. China
| | - Congyuan Ma
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, P.R. China
| | - Wenlai Li
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, P.R. China
| | - Yue Li
- Division of endocrinology, The Renhe Hospital of Three Gorges University, Yichang, Hubei, P.R. China
| | - Meng Zhang
- Division of endocrinology, The Renhe Hospital of Three Gorges University, Yichang, Hubei, P.R. China
| | - Ping Zhu
- Division of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei, P.R. China
| |
Collapse
|
5
|
Szabo B, Gasz B, Fazekas LA, Varga A, Kiss-Papai L, Matolay O, Rezsabek Z, Al-Smadi MW, Nemeth N. Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison. Biomedicines 2022; 10:biomedicines10071508. [PMID: 35884813 PMCID: PMC9313372 DOI: 10.3390/biomedicines10071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular graft maturation is associated with blood flow characteristics, such as velocity, pressure, vorticity, and wall shear stress (WSS). Many studies examined these factors separately. We aimed to examine the remodeling of arterio-venous fistulas (AVFs) and loop-shaped venous interposition grafts, together with 3D flow simulation. Thirty male Wistar rats were randomly and equally divided into sham-operated, AVF, and loop-shaped venous graft (Loop) groups, using the femoral and superficial inferior epigastric vessels for anastomoses. Five weeks after surgery, the vessels were removed for histological evaluation, or plastic castings were made and scanned for 3D flow simulation. Remodeling of AVF and looped grafts was complete in 5 weeks. Histology showed heterogeneous morphology depending on the distribution of intraluminal pressure and WSS. In the Loop group, an asymmetrical WSS distribution coincided with the intima hyperplasia spots. The tunica media was enlarged only when both pressure and WSS were high. The 3D flow simulation correlated with the histological findings, identifying “hotspots” for intimal hyperplasia formation, suggesting a predictive value. These observations can be useful for microvascular research and for quality control in microsurgical training.
Collapse
Affiliation(s)
- Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
| | - Balazs Gasz
- Department of Surgical Research and Techniques, Faculty of Medicine, University of Pecs, Szigeti u. 12, H-7624 Pecs, Hungary; (B.G.); (L.K.-P.)
| | - Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
| | - Levente Kiss-Papai
- Department of Surgical Research and Techniques, Faculty of Medicine, University of Pecs, Szigeti u. 12, H-7624 Pecs, Hungary; (B.G.); (L.K.-P.)
| | - Orsolya Matolay
- Department of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary;
| | - Zsofia Rezsabek
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
| | - Mohammad W. Al-Smadi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (B.S.); (L.A.F.); (A.V.); (Z.R.); (M.W.A.-S.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| |
Collapse
|
6
|
Tang H, Zhang X, Xue G, Xu F, Wang Q, Yang P, Hong B, Xu Y, Huang Q, Liu J, Zuo Q. The biology of bone morphogenetic protein signaling pathway in cerebrovascular system. Chin Neurosurg J 2021; 7:36. [PMID: 34465399 PMCID: PMC8408949 DOI: 10.1186/s41016-021-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat to human health in modern society. In recent decades, many studies have revealed the underlying biology and mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment and basic research of cerebrovascular diseases.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Xiaoxi Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Qingsong Wang
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Pengfei Yang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
7
|
Bai H, Sadaghianloo N, Gorecka J, Liu S, Ono S, Ramachandra AB, Bonnet S, Mazure NM, Declemy S, Humphrey JD, Dardik A. Artery to vein configuration of arteriovenous fistula improves hemodynamics to increase maturation and patency. Sci Transl Med 2021; 12:12/557/eaax7613. [PMID: 32817365 DOI: 10.1126/scitranslmed.aax7613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/17/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Arteriovenous fistulae (AVF) are the preferred mode of hemodialysis access, but 60% of conventional [vein-to-artery (V-A)] AVF fail to mature, and only 50% remain patent at 1 year. We previously showed improved maturation and patency in a pilot study of the radial artery deviation and reimplantation (RADAR) technique that uses an artery-to-vein (A-V) configuration. Here, we show that RADAR exhibits higher rates of maturation, as well as increased primary and secondary long-term patencies. RADAR is also protective in female patients, where it is associated with decreased reintervention rates and improved secondary patency. RADAR and conventional geometries were compared further in a rat bilateral carotid artery-internal jugular vein fistula model. There was decreased cell proliferation and neointimal hyperplasia in the A-V configuration in male and female animals, but no difference in hypoxia between the A-V and V-A configurations. Similar trends were seen in uremic male rats. The A-V configuration also associated with increased peak systolic velocity and expression of Kruppel-like factor 2 and phosphorylated endothelial nitric oxide synthase, consistent with improved hemodynamics. Computed tomography and ultrasound-informed computational modeling showed different hemodynamics in the A-V and V-A configurations, and improving the hemodynamics in the V-A configuration was protective against neointimal hyperplasia. These findings collectively demonstrate that RADAR is a durable surgical option for patients requiring radial-cephalic AVF for hemodialysis access.
Collapse
Affiliation(s)
- Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan 450052, China
| | - Nirvana Sadaghianloo
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire, INSERM 1065, 06200 Nice, France.,Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, 06000 Nice, France
| | - Jolanta Gorecka
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Surgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Sophie Bonnet
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, 06000 Nice, France
| | - Nathalie M Mazure
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire, INSERM 1065, 06200 Nice, France
| | - Serge Declemy
- Centre Hospitalier Universitaire de Nice, Department of Vascular Surgery, 06000 Nice, France
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06520, USA. .,Department of Surgery, Yale School of Medicine, New Haven, CT 06520, USA.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA.,Department of Surgery, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Benedetto F, Spinelli D, Derone G, Cutrupi A, Barillà D, Pipitò N. Initial single-center experience with a new external support device for the creation of the forearm native arteriovenous fistula for hemodialysis. J Vasc Access 2021; 23:524-531. [PMID: 33726627 DOI: 10.1177/11297298211002570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To assess and compare the maturation rate of the native radiocephalic arteriovenous fistula (RC-AVF) created with and without a nitinol external support (VasQ™ Laminate Medical Technologies Ltd, Tel Aviv, Israel). METHODS Data of all consecutive patients who underwent the creation of native RC-AVFs at our center between October 2018 and January 2020 was prospectively collected and retrospectively analyzed.Selected patients who had a suitable vein and a radial artery with triphasic flow at preoperative duplex ultrasound exam and were selected for the creation of a radiocephalic fistula were included. Exclusion criteria were: malignant tumors, acute renal failure, previous upper limb revascularization, and septic status. Patency and maturation, vein, and artery diameter and blood flow rate were assessed at the following intervals: post-operatively, 24 h post-operatively, 1 month, 3 months, and 6 months post-operatively. RESULTS Forty-nine patients (31 males, mean age 65.7 years old) were included. Patients who received VasQ™ devices were 25 (VasQ group), the other 24 formed the control group. All patients underwent radio-cephalic AVF placement (21 on the wrist, 20 on the forearm, 8 on the proximal forearm). There were no perioperative complications and fatalities. At 1, 3, and 6 months, primary patency rates were 96 ± 4%, 96 ± 4%, 91 ± 6% (VasQ group) versus 87 ± 7%, 87 ± 7%, 80 ± 9% (control group, P 0.17), secondary patency rates were 96 ± 4%, 96 ± 4%, 91 ± 6% (VasQ group) versus 95 ± 4%, 90 ± 7%, 90 ± 7% (control group, P 0.79). A significantly larger vein diameter increase postoperatively (P 0.009) and a greater maturation rate (96% vs 74%, p 0.044) were found in the VasQ group compared to the control group. CONCLUSIONS The use of the VasQ™ device was associated with higher maturation rates and larger vein diameters postoperatively. The patency rates were slightly higher but not significantly. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Filippo Benedetto
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| | - Domenico Spinelli
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| | - Graziana Derone
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| | - Andrea Cutrupi
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| | - David Barillà
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| | - Narayana Pipitò
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Frösen J, Cebral J, Robertson AM, Aoki T. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 2020; 47:E21. [PMID: 31261126 DOI: 10.3171/2019.5.focus19234] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/01/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Unruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both. METHODS This review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models. RESULTS Blood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process. CONCLUSIONS Flow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.
Collapse
Affiliation(s)
- Juhana Frösen
- 1Department of Neurosurgery, and.,2Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital, Kuopio, Finland
| | - Juan Cebral
- 3Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, Virginia
| | - Anne M Robertson
- 4Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Tomohiro Aoki
- 5Department of Molecular Pharmacology, Research Institute, and.,6Core Research for Evolutional Science and Technology (CREST) from Japan Agency for Medical Research and Development (AMED), National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
10
|
Franzoni M, O'Connor DT, Marcar L, Power D, Moloney MA, Kavanagh EG, Leask RL, Nolan J, Kiely PA, Walsh MT. The Presence of a High Peak Feature Within Low-Average Shear Stimuli Induces Quiescence in Venous Endothelial Cells. Ann Biomed Eng 2019; 48:582-594. [PMID: 31555984 DOI: 10.1007/s10439-019-02371-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Wall shear stress (WSS) is an important stimulus in vascular remodelling and vascular lesion development. The current methods to assess and predict the risk associated with specific unsteady WSS consider the WSS mean values or the presence of reverse phases described by the oscillatory shear index. Recent evidence has shown that the accuracy of these methods is limited, especially with respect to the venous environment. Unsteady WSS are characterised by several features that may individually affect endothelial cells. Consequently, we assessed the effects of averaged WSS (TAWSS), temporal WSS gradient (TWSSG), maximum WSS (WSS peak) and reverse phase (OSI) by applying different WSS profiles to venous EC in-vitro, using a real-time controlled cone-and-plate cell-shearing device for 24 h. We found that TWSSG and WSS peak affect cell elongation and alignment respectively. We also found that the WSS waveforms with a peak of 1.5 Pa or higher significantly correlate with the induction of a protective phenotype. Cell phenotype induced by these high peak waveforms does not correlate to what is predicted by the hemodynamic indices currently used. The definition of reliable hemodynamic indices can be used to inform the computational models aimed at estimating the hemodynamic effects on vascular remodelling.
Collapse
Affiliation(s)
- M Franzoni
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - D T O'Connor
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - L Marcar
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - D Power
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - M A Moloney
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - E G Kavanagh
- Health Research Institute, University of Limerick, Limerick, Ireland.,Department of Vascular Surgery, University Hospital Limerick, Limerick, Ireland
| | - R L Leask
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - J Nolan
- Health Research Institute, University of Limerick, Limerick, Ireland.,Graduate Entry Medical School, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - P A Kiely
- Health Research Institute, University of Limerick, Limerick, Ireland.,Graduate Entry Medical School, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - M T Walsh
- School of Engineering, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland. .,Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
11
|
Walsh MT, Moore JE. Editorial: Special Issue on Vascular Access : Towards Improving Vascular Access. Cardiovasc Eng Technol 2018; 8:237-239. [PMID: 28795379 DOI: 10.1007/s13239-017-0326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Michael T Walsh
- Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|