1
|
Williams J, Ahlqvist H, Cunningham A, Kirby A, Katz I, Fleming J, Conway J, Cunningham S, Ozel A, Wolfram U. Validated respiratory drug deposition predictions from 2D and 3D medical images with statistical shape models and convolutional neural networks. PLoS One 2024; 19:e0297437. [PMID: 38277381 PMCID: PMC10817191 DOI: 10.1371/journal.pone.0297437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
For the one billion sufferers of respiratory disease, managing their disease with inhalers crucially influences their quality of life. Generic treatment plans could be improved with the aid of computational models that account for patient-specific features such as breathing pattern, lung pathology and morphology. Therefore, we aim to develop and validate an automated computational framework for patient-specific deposition modelling. To that end, an image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images. We evaluated the airway and lung morphology produced by our image processing framework, and assessed deposition compared to in vivo data. The 2D-to-3D image processing reproduces airway diameter to 9% median error compared to ground truth segmentations, but is sensitive to outliers of up to 33% due to lung outline noise. Predicted regional deposition gave 5% median error compared to in vivo measurements. The proposed framework is capable of providing patient-specific deposition measurements for varying treatments, to determine which treatment would best satisfy the needs imposed by each patient (such as disease and lung/airway morphology). Integration of patient-specific modelling into clinical practice as an additional decision-making tool could optimise treatment plans and lower the burden of respiratory diseases.
Collapse
Affiliation(s)
- Josh Williams
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Hartree Centre, STFC Daresbury Laboratory, Daresbury, United Kingdom
| | - Haavard Ahlqvist
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Alexander Cunningham
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Andrew Kirby
- Royal Hospital for Children and Young People, NHS Lothian, Edinburgh, United Kingdom
| | | | - John Fleming
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joy Conway
- National Institute of Health Research Biomedical Research Centre in Respiratory Disease, Southampton, United Kingdom
- Respiratory Sciences, Centre for Health and Life Sciences, Brunel University, London, United Kingdom
| | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ali Ozel
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute for Material Science and Engineering, TU Clausthal, Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Northrup H, He Y, Le H, Berceli SA, Cheung AK, Shiu YT. Differential hemodynamics between arteriovenous fistulas with or without intervention before successful use. Front Cardiovasc Med 2022; 9:1001267. [PMID: 36407418 PMCID: PMC9669082 DOI: 10.3389/fcvm.2022.1001267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 08/22/2023] Open
Abstract
A significant number of arteriovenous fistulas (AVFs) fail to maturate for dialysis. Although interventions promote maturation, functional primary patency loss is higher for AVFs with interventions (assisted maturation) than AVFs without interventions (un-assisted maturation). Although blood flow-associated hemodynamics have long been proposed to affect AVF remodeling, the optimal hemodynamic parameters for un-assisted maturation are unclear. Additionally, AVF maturation progress is generally not investigated until 6 weeks after AVF creation, and the examination is focused on the AVF's venous limb. In this exploratory study, patients (n = 6) underwent magnetic resonance imaging (MRI) at 1 day, 6 weeks, and 6 months after AVF creation surgery. Before successful use for hemodialysis, three AVFs required intervention and three did not. MRI of the AVFs were used to calculate lumen cross-sectional area (CSA) and perform computational fluid dynamics (CFD) to analyze hemodynamics, including velocity, wall shear stress (WSS), and vorticity. For the venous limb, the no-intervention group and intervention group had similar pre-surgery vein diameter and 1-day post-surgery venous CSA. However, the no-intervention group had statistically larger 1-day venous velocity (0.97 ± 0.67 m/s; mean ± SD), WSS (333 ± 336 dyne/cm2) and vorticity (1709 ± 1290 1/s) than the intervention group (velocity = 0.23 ± 0.10 m/s; WSS = 49 ± 40 dyne/cm2; vorticity = 493.1 ± 227 1/s) (P < 0.05). At 6 months, the no-intervention group had statistically larger venous CSA (43.5 ± 27.4 mm2) than the intervention group (15.1 ± 6.2 mm2) (P < 0.05). Regarding the arterial limb, no-intervention AVF arteries also had statistically larger 1-day velocity (1.17 ± 1.0 m/s), WSS (340 ± 423 dyne/cm2), vorticity (1787 ± 1694 1/s), and 6-month CSA (22.6 ± 22.7 mm2) than the intervention group (velocity = 0.64 ± 0.36 m/s; WSS = 104 ± 116 dyne/cm2, P < 0.05; vorticity = 867 ± 4551/s; CSA = 10.7 ± 6.0 mm2, P < 0.05). Larger venous velocity, WSS, and vorticity immediately after AVF creation surgery may be important for later lumen enlargement and AVF maturation, with the potential to be used as a tool to help diagnose poor AVF maturation earlier. However, future studies using a larger cohort are needed to validate this finding and determine cut off values, if any.
Collapse
Affiliation(s)
- Hannah Northrup
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|