1
|
Chi DD, Toan TN, Hill R. A multi-detector comparison to determine convergence of measured relative output factors for small field dosimetry. Phys Eng Sci Med 2024; 47:371-379. [PMID: 37943444 DOI: 10.1007/s13246-023-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
The TRS-483 Code of Practice (CoP) provides generic relative output correction factors, [Formula: see text], for a range of detectors and beam energies as used in small field dosimetry. In this work, the convergence of the relative output factors (ROFs) for 6 MV X-ray beams with and without flattening filters was investigated under different combinations of beam collimation and published detector correction factors. The SFD, PFD and CC04 (IBA) were used to measure ROFs of a TrueBeam STx linear accelerator with small fields collimated by the high-definition MLC, which has 2.5 and 5.0 mm projected leaves. Two configurations were used for the collimators: (1) fixed jaws at 10 × 10 cm2 and (2) with a 2 mm offset from the MLC edge, in line with the recommended geometry from IROC-H as part of their auditing program and published dataset. The [Formula: see text] factors for the three detectors were taken from the TRS483 CoP and other published works. The average differences of ROFs measured by detectors under MLC fields with fixed jaws and with 2 mm jaws offset for the 6 MV-WFF beam are 1.4% and 1.9%, respectively. Similarly, they are 2.3% and 2.4% for the 6MV-FFF beam. The relative differences between the detector-average ROFs and the corresponding IROC-H dataset are 2.0% and 3.1% for the 6 MV-WFF beam, while they are 2.4% and 3.2% for the 6MV-FFF beam at the smallest available field size of 2 × 2 cm2. For smaller field sizes, the average ROFs of the three detectors and corresponding results from Akino and Dufreneix showed the largest difference to be 6.6% and 6.2% under the 6 MV-WFF beam, while they are 3.4% and 3.6% under the 6 MV-WFF beam at the smallest field size of 0.5 × 0.5 cm2. Some well-published specific output correction factors for different small field detector types give better convergence in the calculation of the relative output factor in comparison with the generic data provided by the TRS-483 CoP. Relative output factor measurements should be performed as close as possible to the clinical settings including a combination of collimation systems, beam types and using at least three different types of small field detector for more accurate computation of the treatment planning system. The IROC-H dataset is not available for field size smaller than 2 × 2 cm2 for double checks and so that user should carefully check with other publications with the same setting.
Collapse
Affiliation(s)
- Do Duc Chi
- 108 Military Central Hospital, Hanoi, Vietnam.
- Vietnam Atomic Energy Institute, Hanoi, Vietnam.
| | | | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Kannan M, Saminathan S, Chandraraj V, Raj DG, Ganesh KM. Evaluation of International Atomic Energy Agency Technical Report Series-483 Detector-specific Output Correction Factor for Various Collimator Systems. J Med Phys 2023; 48:281-288. [PMID: 37969152 PMCID: PMC10642599 DOI: 10.4103/jmp.jmp_59_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 11/17/2023] Open
Abstract
Aim In this study, a 6MV flattening filter (FF) and 6MV FF Free (FFF) photon beam small-field output factors (OF) were measured with various collimators using different detectors. The corrected OFs were compared with the treatment planning system (TPS) calculated OFs. Materials and Methods OF measurements were performed with four different types of collimators: Varian Millennium multi-leaf collimator (MLC), Elekta Agility MLC, Apex micro-MLC (mMLC) and a stereotactic cone. Ten detectors (four ionization chambers and six diodes) were used to perform the OF measurements at a depth of 10 cm with a source-to-surface distance of 90 cm. The corrected OF was calculated from the measurements. The corrected OFs were compared with existing TPS-generated OFs. Results The use of detector-specific output correction factor (OCF) in the PTW diode P detector reduced the OF uncertainty by <4.1% for 1 cm × 1 cm Sclin. The corrected OF was compared with TPS calculated OF; the maximum variation with the IBA CC01 chamber was 3.75%, 3.72%, 1.16%, and 0.90% for 5 mm stereotactic cone, 0.49 cm × 0.49 cm Apex mMLC, 1 cm × 1 cm Agility MLC, and 1 cm × 1 cm Millennium MLC, respectively. Conclusion The technical report series-483 protocol recommends that detector-specific OCF should be used to calculate the corrected OF from the measured OF. The implementation of OCF in the TPS commissioning will reduce the small-field OF variation by <3% for any type of detector.
Collapse
Affiliation(s)
- Mageshraja Kannan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - D. Gowtham Raj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K. M. Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Varian eclipse stereotactic 5 mm cone data commissioning. Phys Eng Sci Med 2022; 45:1013-1020. [PMID: 35997923 DOI: 10.1007/s13246-022-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Conical collimators are effective and readily available accessories for the field shaping of small stereotactic fields, however the measurements required to accurately characterise the smallest radiation fields are difficult, prone to large errors, and there is little published commissioning data to compare measurements against. The aim of this investigation was to commission the cone dose calculation algorithm of a Varian Eclipse treatment planning system for a Varian 5 mm cone attached to a Varian TrueBeam linear accelerator beam-matched to the Varian Golden Beam Data (GBD). Tissue maximum ratios (TMRs) and off-axis ratios (OARs) were measured using PTW 60019 microDiamond and PTW 60018 SRS Diode detectors for a flattening filter free 6MV beam. The output factor (OF) was measured with the microDiamond and EBT-XD film. Results were compared to the GBD for this cone and an OF measured by the Australian Clinical Dosimetry Service during an independent audit. Film dosimetry was used to evaluate Eclipse dose calculations in a solid water phantom and end-to-end accuracy with an anthropomorphic head phantom. Output correction factors were derived from IAEA TRS-483. Gamma analysis was used to compare measured TMRs and OARs, and to compare Eclipse dose planes with film dosimetry results. Comparisons between measured and GBD TMRs passed gamma analysis within the specified criteria, while differences between distances to agreement for OARs measured with different detectors was attributed to different volume averaging characteristics. The OFs measured with the microDiamond and film agreed within measurement uncertainty. It was decided to configure Eclipse with the microDiamond measured OF and the SRS Diode measured TMR and OAR data. This was validated with various comparisons carried out to confirm both measurement accuracy and Eclipse configuration.
Collapse
|
4
|
Shaw M, Lye J, Alves A, Keehan S, Lehmann J, Hanlon M, Kenny J, Baines J, Porumb C, Geso M, Brown R. Characterisation of a synthetic diamond detector for end-to-end dosimetry in stereotactic body radiotherapy and radiosurgery. Phys Imaging Radiat Oncol 2021; 20:40-45. [PMID: 34722939 PMCID: PMC8536779 DOI: 10.1016/j.phro.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Synthetic diamond detectors offer real time measurement of dose in radiotherapy applications which require high spatial resolution. Additional considerations and corrections are required for measurements where the diamond detector is orientated at various angles to the incident beam. This study investigated diamond detectors for end-to-end testing of Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery (SRS) in the context of dosimetry audits. MATERIAL AND METHODS Seven individual diamond detectors were investigated and compared with respect to warm up stability, dose-rate dependence, linearity, detector shadowing, energy response, cross-calibration, angular dependence and positional sensitivity in SBRT and SRS. RESULTS Large variation in the cross calibration factors was found between the seven individual detectors. For each detector, the energy dependence in the cross calibration factor was on average <0.6% across the beam qualities investigated (Co-60 Gamma Knife, and MV beams with TPR20,10 0.684-0.733). The angular corrections for individual fields were up to 5%, and varied with field size. However, the average angular dependence for all fields in a typical SRS treatment delivery was <1%. The overall measurement uncertainty was 3.6% and 3.1% (2σ) for an SRS and SBRT treatment plan respectively. CONCLUSION Synthetic diamond detectors were found to be reliable and robust for end-to-end dosimetry in SBRT and SRS applications. Orientation of the detector relative to the beam axis is an important consideration, as significant corrections are required for angular dependence.
Collapse
Affiliation(s)
- Maddison Shaw
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jessica Lye
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
- Olivia Newtown John Cancer Wellness & Research Centre, Heidelberg, VIC, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia
- School of Science, RMIT University, Melbourne, Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Australia
- Institute of Medical Physics, University of Sydney, Australia
| | - Maximilian Hanlon
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - John Kenny
- Medical Physics Specialists, Health Stem Solutions, Melbourne, VIC, Australia
| | - John Baines
- Radiation Oncology, Townsville Cancer Centre, Townsville, QLD, Australia
| | - Claudiu Porumb
- Alfred Health Radiation Oncology, Melbourne VIC, Australia
| | - Moshi Geso
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| |
Collapse
|
5
|
Kinhikar R, Saini V, Upreti RR, Kale S, Sutar A, Tambe C, Kadam S. Measurement of the small field output factors for 10 MV photon beam using IAEA TRS-483 dosimetry protocol and implementation in Eclipse TPS commissioning. Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abb319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Abstract
Dosimetry of small fields (SF) is vital for the success of highly conformal techniques. IAEA along with AAPM recently published a code of practice TRS-483 for SF dosimetry. The scope of this paper is to investigate the performance of three different detectors with 10 MV with-flatting-filter (WFF) beam using TRS-483 for SF dosimetry and subsequent commissioning of the Eclipse treatment planning system (TPS version-13.6) for SF data. SF dosimetry data (beam-quality TPR
20,10(10), cross-calibration, beam-profile, and field-output-factor (F.O.F)) measurements were performed for PTW31006-pinpoint, IBA-CC01 and IBA-EFD-3G diode detectors in nominal field size (F.S) range 0.5 × 0.5cm2 to 10 × 10 cm2 with water and solid water medium using Varian Truebeam linac. However, Eclipse-TPS commissioning data was acquired using IBA-EFD-3G diode, and absolute dose calibration was performed with FC-65G detector. The dosimetric performance of the Eclipse-TPS was validated using TLD-LiF chips, IBA-PFD, and IBA-EFD-3G diodes. Dosimetric performance of the PTW31006-pinpoint, IBA-CC01, and IBA-EFD-3G detectors was successfully tested for SF dosimetry. The F.O.Fs were generated and found in close agreement for all F.S except 0.5 × 0.5cm2. It is also found that TPR20,10(10) value can be derived within 0.5% accuracy from a non-reference field using Palmans equation. Cross-calibration can be performed in F.S 6 × 6 cm2 with a maximum variation of 0.5% with respect to 10 × 10cm2. During profile measurement, the full-width half-maxima (FWHM) of F.S 0.5 × 0.5cm2 was found maximum deviated from the geometric F.S. In addition, Eclipse-TPS was commissioned along with some limitations: F.O.F below F.S 1 × 1cm2 was ignored by TPS, PDD and profiles were dropped from configuration below F.S 2 × 2 cm2, and F.O.F which does not satisfy the condition 0.7 < A/B < 1.4 (A and B are FWHM in cross-line and in-line direction) have higher uncertainty than specified in TRS-483. Validation tests for Eclipse-TPS generated plans were also performed. The measured dose was in close agreement (3%) with TPS calculated dose up to F.S 1.5 × 1.5cm2.
Collapse
|
6
|
Mamesa S, Oonsiri S, Sanghangthum T, Yabsantia S, Suriyapee S. The impact of corrected field output factors based on IAEA/AAPM code of practice on small-field dosimetry to the calculated monitor unit in eclipse™ treatment planning system. J Appl Clin Med Phys 2020; 21:65-75. [PMID: 32237215 PMCID: PMC7286014 DOI: 10.1002/acm2.12855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/13/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the effect of field output factors (FOFs) according to the current protocol for small-field dosimetry in conjunction to treatment planning system (TPS) commissioning. The calculated monitor unit (MU) for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans in Eclipse™ TPS were observed. Micro ion chamber (0.01 CC) (CC01), photon field diode (shielded diode) (PFD), and electron field diode (unshielded diode) (EFD) were used to measure percentage depth doses, beam profiles, and FOFs from 1 × 1 cm2 to 10 × 10 cm2 field sizes of 6 MV photon beams. CC01 illustrated the highest percentage depth doses at 10 cm depth while EFD exhibited the lowest with the difference of 1.6% at 1 × 1 cm2 . CC01 also produced slightly broader penumbra, the difference with other detectors was within 1 mm. For uncorrected FOF of three detectors, the maximum percent standard deviation (%SD) was 5.4% at 1 × 1 cm2 field size. When the correction factors were applied, this value dropped to 2.7%. For the calculated MU in symmetric field sizes, beam commissioning group from uncorrected FOF demonstrated maximum %SD of 6.0% at 1 × 1 cm2 field size. This value decreased to 2.2% when the corrected FOF was integrated. For the calculated MU in IMRT-SRS plans, the impact of corrected FOF reduced the maximum %SD from 6.0% to 2.5% in planning target volume (PTV) less than 0.5 cm3 . Beam commissioning using corrected FOF also decreased %SD for VMAT-SRS plans, although it was less pronounced in comparison to other treatment planning techniques, since the %SD remained less than 2%. The use of FOFs based on IAEA/AAPM TRS 483 has been proven in this research to reduce the discrepancy of calculated MU among three beam commissioning datasets in Eclipse™ TPS. The dose measurement of both symmetric field and clinical cases comparing to the calculation illustrated the dependence of the types of detector commissioning and the algorithm of the treatment planning for small field size.
Collapse
Affiliation(s)
- Sammuel Mamesa
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sornjarod Oonsiri
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Taweap Sanghangthum
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sumalee Yabsantia
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sivalee Suriyapee
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
7
|
de Chavez R, Jones CE, Charles PH. Integral small field output factor measurements using a transmission ionisation chamber. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 42:235-244. [DOI: 10.1007/s13246-018-0716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
8
|
Oliver CP, Butler DJ, Takau V, Williams I. Survey of 5 mm small-field output factor measurements in Australia. J Appl Clin Med Phys 2018; 19:329-337. [PMID: 29368796 PMCID: PMC5849830 DOI: 10.1002/acm2.12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) held a comparison exercise in April 2016 where participants came to ARPANSA and measured the output factor of a nominal 5 mm cone attached to the ARPANSA Elekta Synergy (Elekta, Crawley, UK) linear accelerator. The goal of the exercise was to compare the consistency and methods used by independent medical physicists in measuring small‐field output factors. ARPANSA provided a three‐dimensional scanning tank for detector setup and positioning, but the participants were required to measure the output factor with their own detectors. No information regarding output factors previously measured was supplied to participants to make each result as independent as possible. Fifteen groups travelled to ARPANSA bringing a wide range of detectors and methods. A total of 30 measurements of the output factor were made. The standard deviation of the measurements (excluding one expected outlier from an uncorrected ionization chamber measurement) was 3.6%. The results provide an insight into the consistency of small‐field dosimetry being performed in Australia and New Zealand at the present time.
Collapse
Affiliation(s)
- Christopher P Oliver
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Viliami Takau
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| | - Ivan Williams
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Vic, Australia
| |
Collapse
|
9
|
Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study. Phys Med 2017; 41:33-38. [DOI: 10.1016/j.ejmp.2017.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
|
10
|
De Coste V, Francescon P, Marinelli M, Masi L, Paganini L, Pimpinella M, Prestopino G, Russo S, Stravato A, Verona C, Verona-Rinati G. Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry? ACTA ACUST UNITED AC 2017; 62:7036-7055. [DOI: 10.1088/1361-6560/aa7e59] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't? AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:817-823. [PMID: 27578318 DOI: 10.1007/s13246-016-0478-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.
Collapse
|
12
|
Effects of inaccurate small field dose measurements on calculated treatment doses. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:747-53. [DOI: 10.1007/s13246-016-0461-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
|
13
|
Kairn T, Asena A, Charles PH, Hill B, Langton CM, Middlebrook ND, Moylan R, Trapp JV. Field size consistency of nominally matched linacs. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:289-97. [DOI: 10.1007/s13246-015-0349-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
|