1
|
Rouyin A, Einafshar MM, Arjmand N. A novel personalized homogenous finite element model to predict the pull-out strength of cancellous bone screws. J Orthop Surg Res 2024; 19:732. [PMID: 39506782 PMCID: PMC11542241 DOI: 10.1186/s13018-024-05169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Orthopedic surgeries often involve the insertion of bone screws for various fixation systems. The risk of postoperative screw loosening is usually assessed through experimental or finite element (FE) evaluations of the screw pull-out strength. FE simulations are based on either personalized complex but accurate heterogeneous modeling or non-personalized simple but relatively less accurate homogeneous modeling. This study aimed to develop and validate a novel personalized computed tomography (CT)-based homogeneous FE simulation approach to predict the pull-out force of cancellous bone screws. METHODS Twenty FE simulations of L1-L5 vertebral screw pull-out tests were conducted, i.e., 10 heterogeneous and 10 homogenous models. Screws were inserted into the lower-middle region of vertebrae. In our novel homogeneous model, the region around approximately twice the diameter of the screw was used as a bone material reference volume. Subsequently, the overall material property of this region was homogeneously attributed to the entire vertebra, and pull-out simulations were conducted. RESULTS The mean error of the predicted pull-out forces by our novel homogenous simulations was ~ 7.9% with respect to our heterogeneous model. When solely the cancellous bone was involved during the pull-out process (i.e., for L1, L2, and L3 vertebral bodies whose cortical bone in the inferior region is thin), the novel homogenous model yielded small mean error of < 6.0%. This error, however, increased to ~ 11% when the screw got involved to the cortical bone (for L4 and L5 vertebrae whose cortical bone in the inferior region is thick). CONCLUSION The proposed personalized CT-based homogenous model was highly accurate in estimating the pull-out force especially when only the cancellous bone was involved with the screw.
Collapse
Affiliation(s)
- Alireza Rouyin
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran
| | | | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran.
| |
Collapse
|
2
|
Bai H, Liu L, Duan N, Xue H, Sun L, Li M, Li Z, Zhang K, Wang Q, Huang Q. Biomechanical evaluation of three implants for treating unstable femoral intertrochanteric fractures: finite element analysis in axial, bending and torsion loads. Front Bioeng Biotechnol 2023; 11:1279067. [PMID: 38026862 PMCID: PMC10661970 DOI: 10.3389/fbioe.2023.1279067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: How to effectively enhance the mechanical stability of intramedullary implants for unstable femoral intertrochanteric fractures (UFIFs) is challenging. The authors developed a new implant for managing such patients. Our aim was to enhance the whole mechanical stability of internal devices through increasing antirotation and medial support. We expected to reduce stress concentration in implants. Each implant was compared to proximal femoral nail antirotation (PFNA) via finite element method. Methods: Adult AO/OTA 31-A2.3 fracture models were constructed, and then the new intramedullary system (NIS), PFNA, InterTan nail models were assembled. We simulated three different kinds of load cases, including axial, bending, and torsion loads. For further comparison of PFNA and the NIS, finite element analysis (FEA) was repeated for five times under axial loads of 2100 N. Two types of displacement and stress distribution were assessed. Results: Findings showed that the NIS had the best mechanical stability under axial, bending, and torsion load conditions compared to PFNA and InterTan. It could be seen that the NIS displayed the best properties with respect to maximal displacement while PFNA showed the worst properties for the same parameter in axial loads of 2100 N. In terms of maximal stress, also the NIS exhibited the best properties while PFNA showed the worst properties in axial loads of 2100 N. For bending and torsion load cases, it displayed a similar trend with that of axial loads. Moreover, under axial loads of 2100 N, the difference between the PFNA group and the NIS group was statistically significant (p < 0.05). Conclusion: The new intramedullary system exhibited more uniform stress distribution and better biomechanical properties compared to the PFNA and InterTan. This might provide a new and efficacious device for managing unstable femoral intertrochanteric fractures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qian Wang
- Department of Orthopedics, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Huang
- Department of Orthopedics, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Dutta A, Singh M, Kumar K, Ribera Navarro A, Santiago R, Kaul RP, Patil S, Kalaskar DM. Accuracy of 3D printed spine models for pre-surgical planning of complex adolescent idiopathic scoliosis (AIS) in spinal surgeries: a case series. ANNALS OF 3D PRINTED MEDICINE 2023; 11:None. [PMID: 37592961 PMCID: PMC10427719 DOI: 10.1016/j.stlm.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 08/19/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a noticeable spinal deformity in both adult and adolescent population. In majority of the cases, the gold standard of treatment is surgical intervention. Technological advancements in medical imaging and 3D printing have revolutionised the surgical planning and intraoperative decision making for surgeons in spinal surgery. However, its applicability for planning complex spinal surgeries is poorly documented with human subjects. The objective of this study is to evaluate the accuracy of 3D printed models for complex spinal deformities based on Cobb angles between 40° to 95°.This is a retrospective cohort study where, five CT scans of the patients with AIS were segmented and 3D printed for evaluating the accuracy. Consideration was given to the Inter-patient and acquisition apparatus variability of the CT-scan dataset to understand the effect on trueness and accuracy of the developed CAD models. The developed anatomical models were re-scanned for analysing quantitative surface deviation to assess the accuracy of 3D printed spinal models. Results show that the average of the root mean square error (RMSE) between the 3DP models and virtual models developed using CT scan of mean surface deviations for the five 3d printed models was found to be 0.5±0.07 mm. Based on the RMSE, it can be concluded that 3D printing based workflow is accurate enough to be used for presurgical planning for complex adolescent spinal deformities. Image acquisition and post processing parameters, type of 3D printing technology plays key role in acquiring required accuracy for surgical applications.
Collapse
Affiliation(s)
- Abir Dutta
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| | - Menaka Singh
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Kathryn Kumar
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Aida Ribera Navarro
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Rodney Santiago
- Department of Radiology, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Ruchi Pathak Kaul
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
| | - Sanganagouda Patil
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| | - Deepak M Kalaskar
- UCL Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, London, United Kingdom
- Royal National Orthopaedic Hospital NHS Trust, Spinal Surgery Unit, Stanmore, HA7 4LP, London, United Kingdom
| |
Collapse
|
4
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
5
|
Wang Y, Chen W, Zhang L, Xiong C, Zhang X, Yu K, Ju J, Chen X, Zhang D, Zhang Y. Finite Element Analysis of Proximal Femur Bionic Nail (PFBN) Compared with Proximal Femoral Nail Antirotation and InterTan in Treatment of Intertrochanteric Fractures. Orthop Surg 2022; 14:2245-2255. [PMID: 35848160 PMCID: PMC9483054 DOI: 10.1111/os.13247] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/20/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To compare the biomechanical properties of proximal femur bionic nail (PFBN), proximal femoral nail antirotation (PFNA) and InterTan in the treatment of elderly intertrochanteric fractures AO/OTA 31‐A1.3 by finite element analysis. Methods We used Mimics, Unigraphics and other software to establish normal femur and AO/OTA 31‐A1.3 fracture models, and reconstructed PFBN, PFNA and InterTan intramedullary nail models, and assembled them on the fracture model. The ANSYS software was used to compare the femoral von Mises stress distribution, deformation distribution, and internal fixation stress distribution of each group under a load of 2100 N. Results It could be seen that the femoral maximum stress, femoral maximum displacement, and maximum stress of internal fixation of the PFBN group were lower than those in the PFNA group and the InterTan group. The maximum femoral stress of the PFBN was 190.25 MPa, while the maximum stress of the femur of the PFNA and InterTan groups were 238.41 Mpa and 226.97 Mpa. The maximum femoral displacement of each group were located at the top of the femoral head, and the maximum displacement of the PFBN group was 14.373 mm, and the maximum displacement values of the PFNA and InterTan groups were 19.49 and 15.225 mm. For the stress distribution of intramedullary nail, the maximum stress of the three kinds of internal fixation was located on the main nail. The maximum stress of PFBN was 1191.8 MPa, compared with 2142.8 MPa for PFNA and 1702.3 MPa for InterTan. And the maximum stress on the PFBN pressure nail was 345.35 MPa, compared with 868.6 MPa for the PFNA spiral blade and 545.5 MPa for InterTan interlocking twin nails. Conclusion Compared with PFNA and InterTan, PFBN has better mechanical properties. The biomechanical characteristics of PFBN are more advantageous than PFNA and InterTan internal fixation system in the treatment of femoral intertrochanteric fractures.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Wei Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lijia Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Chen Xiong
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Xiaomeng Zhang
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Kai Yu
- Department of Orthopedics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jiabao Ju
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Xiaofeng Chen
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Dianying Zhang
- Department of Trauma and Orthopeadics, Peking University People's Hospital, Beijing, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
AKINCI SALIHAZEYNEB, ARSLAN YUNUSZIYA. FINITE ELEMENT SPINE MODELS AND SPINAL INSTRUMENTS: A REVIEW. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is considerable biomechanics literature on finite element modeling and analysis of the spine. To accurately mimic the biomechanical behavior of the vertebral column, a generated computational model has to include anatomical structures that are consistent with physiological reality. In this review article, we focused on the finite element spine models that have been developed by various approaches in the literature. Firstly, the anatomical features of the spine and the spinal components have been briefly explained. We then focused on the modeling stages of vertebrae, ligaments, facet joints, intervertebral discs, and spinal instruments. With this paper, we expect to provide a comprehensive resource regarding the modeling preferences used in spine modeling.
Collapse
Affiliation(s)
- SALIHA ZEYNEB AKINCI
- Department of Biomedical Engineering and Bioinformatics, Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Beykoz, Istanbul, Turkey
| | - YUNUS ZIYA ARSLAN
- Department of Robotics and Intelligent Systems, Institute of Graduate Studies in Science and Engineering, Turkish-German University, Beykoz, Istanbul 34820, Turkey
| |
Collapse
|
7
|
Ciklacandir S, Mihcin S, Isler Y. Detailed Investigation of Three-Dimensional Modeling and Printing Technologies from Medical Images to Analyze Femoral Head Fractures Using Finite Element Analysis. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhang RY, Li JT, Zhao JX, Zhao Z, Zhang LC, Yun C, Su XY, Tang PF. Comparison of oblique triangular configuration and inverted equilateral triangular configuration of three cannulated screws in treating unstable femoral neck fracture: A finite element analysis. Injury 2022; 53:353-361. [PMID: 34801246 DOI: 10.1016/j.injury.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The cross-sectional area of three parallel screws might affect the stability of the internal fixation of femoral neck fractures. The screws fixed in the oblique-triangle configuration (OTC) were assumed to have a larger cross-sectional area, but the biomechanical stability has not yet been validated. In this study, finite element analyses were performed to compare the biomechanical properties of the internal fixation fixed by the OTC and the traditional Inverted Equilateral Triangle Configuration (IETC). METHOD Pauwels type III fracture was established on the three-dimensional femoral model and three cannulated screws with the OTC and traditional IETC methods were applied. The oblique-triangle configuration with the largest area inscribed the femoral neck isthmus by the three screws was determined, the area and circumference of the cross-section formed by the OTC and IETC model were compared. Stress, strain, and displacement peaks of the two configuration models under different loads were compared. Twelve pairs of nodes on the fracture ends were selected and the displacement of the fracture ends was evaluated through the displacement between these nodes. RESULTS The area and circumference of the cross-section formed by the OTC were larger than those in the IETC model. The degree of stress dispersion around the screw holes in the OTC model was better than that of the IETC, but the stress distribution order of the three screws in the two models was consistent. The maximum stress, strain, displacement, and displacement of the fracture end in the OTC model were smaller than those in the IETC model. The stress, strain, displacement, and fracture end displacement peaks of the two fixed models gradually increase with the increase of loads. CONCLUSION The oblique-triangle configuration showed superior mechanical properties than the IETC in finite element analyses. This study suggests that when three screws are fixed in parallel method, the larger the cross-sectional area of the screw configuration, the better stability of the internal fixation might be obtained. Furthermore, the biomechanical properties of various spatial configurations and screw holes of the three parallel screws need to be considered before clinical practice.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Department of Orthopaedics, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, No. 24, Shijingshan Road, Beijing 100043, China
| | - Jian-Tao Li
- Department of orthopaedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jing-Xin Zhao
- Department of orthopaedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhe Zhao
- Department of Orthopaedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Li-Cheng Zhang
- Department of orthopaedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Cai Yun
- Department of Orthopaedics, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, No. 24, Shijingshan Road, Beijing 100043, China.
| | - Xiu-Yun Su
- Department of Orthopaedics, Southern University of Science and Technology Hospital, Shenzhen Guangdong 518055, China.
| | - Pei-Fu Tang
- Department of orthopaedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing 100853, China.
| |
Collapse
|
9
|
In Silico Optimization of Femoral Fixator Position and Configuration by Parametric CAD Model. MATERIALS 2019; 12:ma12142326. [PMID: 31336577 PMCID: PMC6679040 DOI: 10.3390/ma12142326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 11/17/2022]
Abstract
Structural analysis, based on the finite element method, and structural optimization, can help surgery planning or decrease the probability of fixator failure during bone healing. Structural optimization implies the creation of many finite element model instances, usually built using a computer-aided design (CAD) model of the bone-fixator assembly. The three most important features of such CAD models are: parameterization, robustness and bidirectional associativity with finite elements (FE) models. Their significance increases with the increase in the complexity of the modeled fixator. The aim of this study was to define an automated procedure for the configuration and placement of fixators used in the treatment of long bone fractures. Automated and robust positioning of the selfdynamisable internal fixator on the femur was achieved and sensitivity analysis of fixator stress on the change of major design parameters was performed. The application of the proposed methodology is considered to be beneficial in the preparation of CAD models for automated structural optimization procedures used in long bone fixation.
Collapse
|
10
|
Clifton W, Nottmeier E, Damon A, Dove C, Pichelmann M. The Future of Biomechanical Spine Research: Conception and Design of a Dynamic 3D Printed Cervical Myelography Phantom. Cureus 2019; 11:e4591. [PMID: 31309016 PMCID: PMC6609301 DOI: 10.7759/cureus.4591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Three-dimensional (3D) printing is a growing practice in the medical community for patient care and trainee education as well as production of equipment and devices. The development of functional models to replicate physiologic systems of human tissue has also been explored, although to a lesser degree. Specifically, the design of 3D printed phantoms that possess comparable biomechanical properties to human cervical vertebrae is an underdeveloped area of spine research. In order to investigate the functional uses of cervical 3D printed models for replicating the complex physiologic and biomechanical properties of the human subaxial cervical spine, our institution has created a prototype that accurately reflects these properties and provides a novel method of assessing spinal canal dimensions using simulated myelography. To our knowledge, this is the first 3D printed phantom created to study these parameters. Materials and methods A de-identified cervical spine computed tomography imaging file was segmented using threshold modulation in 3D Slicer software. The subaxial vertebrae (C3-C7) of the scan were individualized by separating the facet joint spaces and uncovertebral joints within the software in order to create individual stereolithography (STL) files. Each individual vertebra was printed on an Ultimaker S5 dual-extrusion printer using white “tough” polylactic acid filament. A human cadaveric subaxial cervical spine was harvested to provide a control for our experiment. Both models were assessed and compared in flexion and extension dynamic motion grossly and fluoroscopically. The maximum angles of deformation on X-ray imaging were recorded using DICOM (Digital Imaging and Communications in Medicine) viewing software. In order to compare the ability to assess canal dimensions of the models using fluoroscopic imaging, a myelography simulation was designed. Results The cervical phantom demonstrated excellent ability to resist deformation in flexion and extension positions, attributed to the high quality of initial segmentation. The gross and fluoroscopic dynamic movement of the phantom was analogous to the cadaver model. The myelography simulator adequately demonstrated the canal dimensions in static and dynamic positions for both models. Pertinent anatomic landmarks were able to be effectively visualized for assessment of canal measurements for sagittal and transverse dimensions. Conclusions By utilizing the latest technologies in DICOM segmentation and 3D printing, our institution has created the first cervical myelography phantom for biomechanical evaluation and trainee instruction. By combining new technologies with anatomical knowledge, quality 3D printing shows great promise in becoming a standard player in the future of spinal biomechanical research.
Collapse
Affiliation(s)
| | | | - Aaron Damon
- Neurosurgery, Mayo Clinic, Jacksonville, USA
| | | | | |
Collapse
|
11
|
[Kinematic examination of the musculoskeletal system : Use of methods of image and image sequence analyses as well as shape and motion models]. DER ORTHOPADE 2018; 47:834-841. [PMID: 30043158 DOI: 10.1007/s00132-018-3599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Image-based preoperative planning has become a routine component in surgery on the musculoskeletal system. In joint arthroplasty it is obligatory. Surgeons are increasingly considering new approaches with additional computer-based kinematic examinations that also generate dynamic image analyses. This article describes several of these new examination techniques and discusses their clinical relevance.
Collapse
|
12
|
|