1
|
Boby K, Veerasingam S. Depression diagnosis: EEG-based cognitive biomarkers and machine learning. Behav Brain Res 2024; 478:115325. [PMID: 39515528 DOI: 10.1016/j.bbr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Depression is a complex mental illness that has significant effects on people as well as society. The traditional techniques for the diagnosis of depression, along with the potential of nascent biomarkers especially EEG-based biomarkers, are studied. This review explores the significance of cognitive biomarkers, offering a comprehensive understanding of their role in the overall assessment of depression. It also investigates the effects of depression on various brain regions, outlines promising areas for future research, and emphasizes the importance of understanding the neurophysiological roots of depression. Furthermore, it elucidates how machine learning and deep learning models are integrated into EEG-based depression diagnosis, emphasizing their importance in optimizing personalized therapeutic protocols and improving diagnostic accuracy with EEG data analysis.
Collapse
Affiliation(s)
- Kiran Boby
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sridevi Veerasingam
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Lin H, Fang J, Zhang J, Zhang X, Piao W, Liu Y. Resting-State Electroencephalogram Depression Diagnosis Based on Traditional Machine Learning and Deep Learning: A Comparative Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6815. [PMID: 39517712 PMCID: PMC11548331 DOI: 10.3390/s24216815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The global prevalence of Major Depressive Disorder (MDD) is increasing at an alarming rate, underscoring the urgent need for timely and accurate diagnoses to facilitate effective interventions and treatments. Electroencephalography remains a widely used neuroimaging technique in psychiatry, due to its non-invasive nature and cost-effectiveness. With the rise of computational psychiatry, the integration of EEG with artificial intelligence has yielded remarkable results in diagnosing depression. This review offers a comparative analysis of two predominant methodologies in research: traditional machine learning and deep learning methods. Furthermore, this review addresses key challenges in current research and suggests potential solutions. These insights aim to enhance diagnostic accuracy for depression and also foster further development in the area of computational psychiatry.
Collapse
Affiliation(s)
- Haijun Lin
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; (J.Z.); (X.Z.); (W.P.); (Y.L.)
| | - Jing Fang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; (J.Z.); (X.Z.); (W.P.); (Y.L.)
| | | | | | | | | |
Collapse
|
3
|
Metin SZ, Uyulan Ç, Farhad S, Ergüzel TT, Türk Ö, Metin B, Çerezci Ö, Tarhan N. Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases with High Accuracy. Clin EEG Neurosci 2024:15500594241273181. [PMID: 39251228 DOI: 10.1177/15500594241273181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.
Collapse
Affiliation(s)
| | - Çağlar Uyulan
- Department of Mechanical Engineering, Katip Çelebi University, İzmir, Turkey
| | - Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | - Türker Tekin Ergüzel
- Department of Software Engineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| | - Ömer Türk
- Department of Computer Technologies, Artuklu University, Mardin, Turkey
| | - Barış Metin
- Neurology Department, Medical Faculty, Uskudar University, Istanbul, Turkey
| | - Önder Çerezci
- Department of Physioterapy and Rehabilitation, Faculty of Health SciencesUskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
4
|
Qin J, Qin Z, Qin Z, Li F, Peng Y, Zhang Y, Yao Y. An automated approach for predicting HAMD-17 scores via divergent selective focused multi-heads self-attention network. Brain Res Bull 2024; 213:110984. [PMID: 38806119 DOI: 10.1016/j.brainresbull.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
This study introduces the Divergent Selective Focused Multi-heads Self-Attention Network (DSFMANet), an innovative deep learning model devised to automatically predict Hamilton Depression Rating Scale-17 (HAMD-17) scores in patients with depression. This model introduces a multi-branch structure for sub-bands and artificially configures attention focus factors on various branches, resulting in distinct attention distributions for different sub-bands. Experimental results demonstrate that when DSFMANet processes sub-band data, its performance surpasses current benchmarks in key metrics such as mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). This success is particularly evident in terms of MSE and MAE, where the performance of sub-band data is significantly superior, highlighting the model's potential in accurately predicting HAMD-17 scores. Concurrently, the experiment also compared the model's performance with sub-band and full-band data, affirming the superiority of the selective focus attention mechanism in electroencephalography (EEG) signal processing. DSFMANet, when utilizing sub-band data, exhibits higher data processing efficiency and reduced model complexity. The findings of this study underscore the significance of employing deep learning models based on sub-band analysis in depression diagnosis. The DSFMANet model not only effectively enhances the accuracy of depression diagnosis but also offers valuable research directions for similar applications in the future. This deep learning-based automated approach can effectively ascertain the HAMD-17 scores of patients with depression, thus offering more accurate and reliable support for clinical decision-making.
Collapse
Affiliation(s)
- Jing Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, North Jianshe Road, Chengdu, Sichuan, PR China.
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, North Jianshe Road, Chengdu, Sichuan, PR China
| | - Zhen Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, North Jianshe Road, Chengdu, Sichuan, PR China
| | - Fali Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, High-tech Zone (West District), Chengdu, Sichuan, PR China
| | - Yueheng Peng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, High-tech Zone (West District), Chengdu, Sichuan, PR China
| | - Yue Zhang
- Stanford University, Stanford, CA 94305, United States
| | - Yutong Yao
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y, Han JX, Wang Y, Liang ZH, Chen D, Cong FY, Yan JQ, Li XL. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res 2023; 10:67. [PMID: 38115158 PMCID: PMC10729551 DOI: 10.1186/s40779-023-00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Qing-Qi Zhou
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China
| | - He Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Qing Hu
- Department of Psychology, the State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, Guangdong, China
| | - Wei-Guang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yang Bai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Jun-Xia Han
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yao Wang
- School of Communication Science, Beijing Language and Culture University, Beijing, 100083, China
| | - Zhen-Hu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, 430072, China.
| | - Feng-Yu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116081, Liaoning, China.
| | - Jia-Qing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China.
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China.
| |
Collapse
|
6
|
Parsa M, Rad HY, Vaezi H, Hossein-Zadeh GA, Setarehdan SK, Rostami R, Rostami H, Vahabie AH. EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107683. [PMID: 37406421 DOI: 10.1016/j.cmpb.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/23/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
Collapse
Affiliation(s)
- Mohsen Parsa
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Habib Yousefi Rad
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Hadi Vaezi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Reza Rostami
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran
| | - Hana Rostami
- ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran; Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| |
Collapse
|
7
|
Sakib N, Islam MK, Faruk T. Machine Learning Model for Computer-Aided Depression Screening among Young Adults Using Wireless EEG Headset. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:1701429. [PMID: 37293375 PMCID: PMC10247322 DOI: 10.1155/2023/1701429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis, variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data filtered at different band frequencies were applied to KNN and SVM classifiers with different kernels. At AB band (8-30 Hz) frequency, 98.43 ± 0.15% accuracy was achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using a KNN classifier. And with the same features and classifier overall accuracy = 98.10 ± 0.11, NPV = 0.977, precision = 0.984, sensitivity = 0.984, specificity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and testing with 5-fold CV. From the findings, it can be concluded that EEG data from an Emotiv headset can be used to detect depression with the proposed method.
Collapse
Affiliation(s)
- Nazmus Sakib
- Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
| | - Md Kafiul Islam
- Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
| | - Tasnuva Faruk
- Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh
- Department of Public Health, Independent University Bangladesh (IUB), Dhaka, Bangladesh
| |
Collapse
|
8
|
Ksibi A, Zakariah M, Menzli LJ, Saidani O, Almuqren L, Hanafieh RAM. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics (Basel) 2023; 13:1779. [PMID: 37238263 PMCID: PMC10217709 DOI: 10.3390/diagnostics13101779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals' complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalization of detection systems. Given the association between EEG signals and particular demographics, such as gender and age, and the influences of these demographic characteristics on the incidence of depression, it would be preferable to include demographic factors during EEG modeling and depression detection. The main objective of this work is to develop an algorithm that can recognize depression patterns by studying EEG data. Following a multiband analysis of such signals, machine learning and deep learning techniques were used to detect depression patients automatically. EEG signal data are collected from the multi-modal open dataset MODMA and employed in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In this project, resting EEG readings of 128 channels are considered. According to CNN, training with 25 epoch iterations had a 97% accuracy rate. The patient's status has to be divided into two basic categories: major depressive disorder (MDD) and healthy control. Additional MDD include the following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper are a few examples of mental illnesses. According to the study, a natural combination of EEG signals and demographic data is promising for the diagnosis of depression.
Collapse
Affiliation(s)
- Amel Ksibi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Zakariah
- Department of Computer Science, College of Computer and Information Sciences, Riyadh 11442, Saudi Arabia
| | - Leila Jamel Menzli
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Latifah Almuqren
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rosy Awny Mohamed Hanafieh
- Department of Computer Science, College of Computing in Al-Qunfudah, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
9
|
Zhang J, Xu B, Yin H. Depression screening using hybrid neural network. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-16. [PMID: 37362740 PMCID: PMC9992920 DOI: 10.1007/s11042-023-14860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 06/28/2023]
Abstract
Depression is a common cause of increased suicides worldwide, and studies have shown that the number of patients suffering from major depressive disorder (MDD) increased several-fold during the COVID-19 pandemic, highlighting the importance of disease detection and depression management, while increasing the need for effective diagnostic tools. In recent years, machine learning and deep learning methods based on electroencephalography (EEG) have achieved significant results in the field of automatic depression detection. However, most current studies have focused on a small number of EEG signal channels, and experimental data require special processing by professionals. In this study, 128 channels of EEG signals were simply filtered and 24-fold leave-one-out cross-validation experiments were performed using 2DCNN-LSTM classifier, support vector machine, K-nearest neighbor and decision tree. The current results show that the proposed 2DCNN-LSTM model has an average classification accuracy of 95.1% with an AUC of 0.98 for depression detection of 6-second participant EEG signals, and the model is much better than 72.05%, 79.7% and 79.49% for support vector machine, K nearest neighbor and decision tree. In addition, we found that the model achieved a 100% probability of correctly classifying the EEG signals of 300-second participants.
Collapse
Affiliation(s)
- Jiao Zhang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Baomin Xu
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Hongfeng Yin
- School of Computer and Information Technology, Cangzhou Jiaotong College, Cangzhou, Hebei China
| |
Collapse
|
10
|
Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern Methods of Diagnostics and Treatment of Neurodegenerative Diseases and Depression. Diagnostics (Basel) 2023; 13:573. [PMID: 36766678 PMCID: PMC9914271 DOI: 10.3390/diagnostics13030573] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
This paper discusses the promising areas of research into machine learning applications for the prevention and correction of neurodegenerative and depressive disorders. These two groups of disorders are among the leading causes of decline in the quality of life in the world when estimated using disability-adjusted years. Despite decades of research, the development of new approaches for the assessment (especially pre-clinical) and correction of neurodegenerative diseases and depressive disorders remains among the priority areas of research in neurophysiology, psychology, genetics, and interdisciplinary medicine. Contemporary machine learning technologies and medical data infrastructure create new research opportunities. However, reaching a consensus on the application of new machine learning methods and their integration with the existing standards of care and assessment is still a challenge to overcome before the innovations could be widely introduced to clinics. The research on the development of clinical predictions and classification algorithms contributes towards creating a unified approach to the use of growing clinical data. This unified approach should integrate the requirements of medical professionals, researchers, and governmental regulators. In the current paper, the current state of research into neurodegenerative and depressive disorders is presented.
Collapse
Affiliation(s)
- Natalia Shusharina
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Denis Yukhnenko
- Department of Social Security and Humanitarian Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Stepan Botman
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Viktor Sapunov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Vladimir Savinov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Gleb Kamyshov
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Dmitry Sayapin
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Igor Voznyuk
- Baltic Center for Neurotechnologies and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Department of Neurology, Pavlov First Saint Petersburg State Medical University, 197022 Saint Petersburg, Russia
| |
Collapse
|
11
|
Wang B, Kang Y, Huo D, Chen D, Song W, Zhang F. Depression signal correlation identification from different EEG channels based on CNN feature extraction. Psychiatry Res Neuroimaging 2023; 328:111582. [PMID: 36565553 DOI: 10.1016/j.pscychresns.2022.111582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/24/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Depression is a mental illness and can even lead to suicide if not be diagnosed and treated. Electroencephalograph (EEG) is used to diagnose depression and it is more complexity to extract the features from all the multimodal channel information . In order to simplify the diagnose process and detect clinical depression, the EEG channels with strong depression information should be identified firstly. Therefore, a depression signal correlation identification method based on convolutional neural network (CNN) is proposed. In the method, the labeled multi-channel EEG is used as data. The EEG signals of each channel are divided into neural network training data set and these data is trained by AlexNet network. Then the correlation classification of each channel for depression is identified based on the trained sample. Accuracy and loss functions are used to evaluate classification index.Conversely, the correlation is lower. An experiments is conducted and the results show that the correlation is not consistent. A few of channels are strongly correlated with depression, such as 13, 17, 28, 40, 46, 66 and 69. These EEG channels are selected to diagnose depression.
Collapse
|
12
|
Barua PD, Vicnesh J, Lih OS, Palmer EE, Yamakawa T, Kobayashi M, Acharya UR. Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cogn Neurodyn 2022:1-22. [PMID: 36467993 PMCID: PMC9684805 DOI: 10.1007/s11571-022-09904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren't any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.
Collapse
Affiliation(s)
- Prabal Datta Barua
- School of Management and Enterprise, University of Southern Queensland, Springfield, Australia
| | - Jahmunah Vicnesh
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Oh Shu Lih
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
| | - Elizabeth Emma Palmer
- Discipline of Pediatric and Child Health, School of Clinical Medicine, University of New South Wales, Kensington, Australia
- Sydney Children’s Hospitals Network, Sydney, Australia
| | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Makiko Kobayashi
- Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan
| | - Udyavara Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
- Department of Bioinformatics and Medical Engineering, Asia University, Taizhong, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Wang B, Kang Y, Huo D, Feng G, Zhang J, Li J. EEG diagnosis of depression based on multi-channel data fusion and clipping augmentation and convolutional neural network. Front Physiol 2022; 13:1029298. [PMID: 36338469 PMCID: PMC9632488 DOI: 10.3389/fphys.2022.1029298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 09/29/2023] Open
Abstract
Depression is an undetectable mental disease. Most of the patients with depressive symptoms do not know that they are suffering from depression. Since the novel Coronavirus pandemic 2019, the number of patients with depression has increased rapidly. There are two kinds of traditional depression diagnosis. One is that professional psychiatrists make diagnosis results for patients, but it is not conducive to large-scale depression detection. Another is to use electroencephalography (EEG) to record neuronal activity. Then, the features of the EEG are extracted using manual or traditional machine learning methods to diagnose the state and type of depression. Although this method achieves good results, it does not fully utilize the multi-channel information of EEG. Aiming at this problem, an EEG diagnosis method for depression based on multi-channel data fusion cropping enhancement and convolutional neural network is proposed. First, the multi-channel EEG data are transformed into 2D images after multi-channel fusion (MCF) and multi-scale clipping (MSC) augmentation. Second, it is trained by a multi-channel convolutional neural network (MCNN). Finally, the trained model is loaded into the detection device to classify the input EEG signals. The experimental results show that the combination of MCF and MSC can make full use of the information contained in the single sensor records, and significantly improve the classification accuracy and clustering effect of depression diagnosis. The method has the advantages of low complexity and good robustness in signal processing and feature extraction, which is beneficial to the wide application of detection systems.
Collapse
Affiliation(s)
- Baiyang Wang
- School of Information Science and Engineering, Linyi University, Linyi, China
| | - Yuyun Kang
- School of Logistics, Linyi University, Linyi, China
| | - Dongyue Huo
- School of Information Science and Engineering, Linyi University, Linyi, China
| | - Guifang Feng
- School of Life Science, Linyi University, Linyi, China
- International College, Philippine Christian University, Manila, Philippines
| | - Jiawei Zhang
- Linyi Trade Logistics Science and Technology Industry Research Institute, Linyi, China
| | - Jiadong Li
- School of Logistics, Linyi University, Linyi, China
| |
Collapse
|
14
|
Benchmarks for machine learning in depression discrimination using electroencephalography signals. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Kabbara A, Robert G, Khalil M, Verin M, Benquet P, Hassan M. An electroencephalography connectome predictive model of major depressive disorder severity. Sci Rep 2022; 12:6816. [PMID: 35473962 PMCID: PMC9042869 DOI: 10.1038/s41598-022-10949-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence showed that major depressive disorder (MDD) is associated with disruptions of brain structural and functional networks, rather than impairment of isolated brain region. Thus, connectome-based models capable of predicting the depression severity at the individual level can be clinically useful. Here, we applied a machine-learning approach to predict the severity of depression using resting-state networks derived from source-reconstructed Electroencephalography (EEG) signals. Using regression models and three independent EEG datasets (N = 328), we tested whether resting state functional connectivity could predict individual depression score. On the first dataset, results showed that individuals scores could be reasonably predicted (r = 0.6, p = 4 × 10-18) using intrinsic functional connectivity in the EEG alpha band (8-13 Hz). In particular, the brain regions which contributed the most to the predictive network belong to the default mode network. We further tested the predictive potential of the established model by conducting two external validations on (N1 = 53, N2 = 154). Results showed statistically significant correlations between the predicted and the measured depression scale scores (r1 = 0.52, r2 = 0.44, p < 0.001). These findings lay the foundation for developing a generalizable and scientifically interpretable EEG network-based markers that can ultimately support clinicians in a biologically-based characterization of MDD.
Collapse
Affiliation(s)
- Aya Kabbara
- Lebanese Association for Scientific Research, Tripoli, Lebanon
- MINDig, F-35000, Rennes, France
| | - Gabriel Robert
- Academic Department of Psychiatry, Centre Hospitalier Guillaume Régnier, Rennes, France
- Empenn, U1228, IRISA, UMR 6074, Rennes, France
- Comportement et Noyaux Gris Centraux, EA 4712, CHU Rennes, Université de Rennes 1, 35000, Rennes, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon
- CRSI Research Center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | - Marc Verin
- Comportement et Noyaux Gris Centraux, EA 4712, CHU Rennes, Université de Rennes 1, 35000, Rennes, France
- Univ Rennes, Inserm, LTSI-U1099, F-35000, Rennes, France
| | - Pascal Benquet
- Univ Rennes, Inserm, LTSI-U1099, F-35000, Rennes, France
| | - Mahmoud Hassan
- MINDig, F-35000, Rennes, France.
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| |
Collapse
|
16
|
Yan DD, Zhao LL, Song XW, Zang XH, Yang LC. Automated detection of clinical depression based on convolution neural network model. BIOMED ENG-BIOMED TE 2022; 67:131-142. [PMID: 35142145 DOI: 10.1515/bmt-2021-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022]
Abstract
As a common mental disorder, depression is placing an increasing burden on families and society. However, the current methods of depression detection have some limitations, and it is essential to find an objective and efficient method. With the development of automation and artificial intelligence, computer-aided diagnosis has attracted more and more attention. Therefore, exploring the use of deep learning (DL) to detect depression has valuable potential. In this paper, convolutional neural network (CNN) is applied to build a diagnostic model for depression based on electroencephalogram (EEG). EEG recordings are analyzed by three different CNN structures, namely EEGNet, DeepConvNet and ShallowConvNet, to dichotomize depression patients and healthy controls. EEG data were collected in the resting state from three electrodes (Fp1, Fz, Fp2) among 80 subjects (40 depressive patients and 40 normal subjects). After the preprocessing step, the DL structures are employed to classify the data, and their recognition performance is evaluated by comparing the classification results. The classification performance shows that depression was effectively detected using EEGNet with 93.74% accuracy, 94.85% sensitivity and 92.61% specificity. In the process of optimizing the parameters of EEGNet structure, the highest accuracy can reach 94.27%. Compared with traditional diagnostic methods, EEGNet is highly worthy for the future depression detection and valuable in terms of accuracy and speed.
Collapse
Affiliation(s)
- Dan-Dan Yan
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Lu-Lu Zhao
- School of Control Science and Engineering, Shandong University, Jinan, China.,School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Xin-Wang Song
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Xiao-Han Zang
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Li-Cai Yang
- School of Control Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
17
|
Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Safayari A, Bolhasani H. Depression diagnosis by deep learning using EEG signals: A systematic review. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|