1
|
Wang ML, Tie CW, Wang JH, Zhu JQ, Chen BH, Li Y, Zhang S, Liu L, Guo L, Yang L, Yang LQ, Wei J, Jiang F, Zhao ZQ, Wang GQ, Zhang W, Zhang QM, Ni XG. Multi-instance learning based artificial intelligence model to assist vocal fold leukoplakia diagnosis: A multicentre diagnostic study. Am J Otolaryngol 2024; 45:104342. [PMID: 38703609 DOI: 10.1016/j.amjoto.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.
Collapse
Affiliation(s)
- Mei-Ling Wang
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, China
| | - Cheng-Wei Tie
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian-Hui Wang
- Department of Endoscopy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Ji-Qing Zhu
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bing-Hong Chen
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, China
| | - Ying Li
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, China
| | - Sen Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Lin Liu
- Department of Otolaryngology Head and Neck Surgery, Dalian Friendship Hospital, Dalian, China
| | - Li Guo
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Long Yang
- Department of Otolaryngology, The Second People's Hospital of Baoshan City, Baoshan, China
| | - Li-Qun Yang
- Department of Otolaryngology, The Second People's Hospital of Baoshan City, Baoshan, China
| | - Jiao Wei
- Department of Otolaryngology, Qujing Second People's Hospital of Yunnan Province, Qujing, China
| | - Feng Jiang
- Department of Otolaryngology, Kunming First People's Hospital, Kunming, China
| | - Zhi-Qiang Zhao
- Department of Otolaryngology, Baoshan People's Hospital, Baoshan, China
| | - Gui-Qi Wang
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Wei Zhang
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, China.
| | - Quan-Mao Zhang
- Department of Endoscopy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Xiao-Guang Ni
- Department of Endoscopy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
du Plessis T, Ramkilawon G, Rae WID, Botha T, Martinson NA, Dixon SAP, Kyme A, Sathekge MM. Introducing a secondary segmentation to construct a radiomics model for pulmonary tuberculosis cavities. LA RADIOLOGIA MEDICA 2023; 128:1093-1102. [PMID: 37474665 PMCID: PMC10474191 DOI: 10.1007/s11547-023-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Accurate segmentation (separating diseased portions of the lung from normal appearing lung) is a challenge in radiomic studies of non-neoplastic diseases, such as pulmonary tuberculosis (PTB). In this study, we developed a segmentation method, applicable to chest X-rays (CXR), that can eliminate the need for precise disease delineation, and that is effective for constructing radiomic models for automatic PTB cavity classification. METHODS This retrospective study used a dataset of 266 posteroanterior CXR of patients diagnosed with laboratory confirmed PTB. The lungs were segmented using a U-net-based in-house automatic segmentation model. A secondary segmentation was developed using a sliding window, superimposed on the primary lung segmentation. Pyradiomics was used for feature extraction from every window which increased the dimensionality of the data, but this allowed us to accurately capture the spread of the features across the lung. Two separate measures (standard-deviation and variance) were used to consolidate the features. Pearson's correlation analysis (with a 0.8 cut-off value) was then applied for dimensionality reduction followed by the construction of Random Forest radiomic models. RESULTS Two almost identical radiomic signatures consisting of 10 texture features each (9 were the same plus 1 other feature) were identified using the two separate consolidation measures. Two well performing random forest models were constructed from these signatures. The standard-deviation model (AUC = 0.9444 (95% CI, 0.8762; 0.9814)) performed marginally better than the variance model (AUC = 0.9288 (95% CI, 0.9046; 0.9843)). CONCLUSION The introduction of the secondary sliding window segmentation on CXR could eliminate the need for disease delineation in pulmonary radiomic studies, and it could improve the accuracy of CXR reporting currently regaining prominence as a high-volume screening tool as the developed radiomic models correctly classify cavities from normal CXR.
Collapse
Affiliation(s)
- Tamarisk du Plessis
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Gopika Ramkilawon
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tanita Botha
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Neil Alexander Martinson
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Centre for TB Research, Baltimore, MD, USA
| | | | - Andre Kyme
- School of Biomedical Engineering, University of Sydney, Sydney, Australia
| | - Mike Michael Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Kiflie A, Tesema Tufa G, Salau AO. Sputum smears quality inspection using an ensemble feature extraction approach. Front Public Health 2023; 10:1032467. [PMID: 36761323 PMCID: PMC9905811 DOI: 10.3389/fpubh.2022.1032467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
The diagnosis of tuberculosis (TB) is extremely important. Sputum smear microscopy is thought to be the best method available in terms of accessibility and ease of use in resource-constrained countries. In this paper, research was conducted to evaluate the effectiveness of tuberculosis diagnosis by examining, among other things, the underlying causes of sputum smear quality for Ethiopian states such as Tigray, Amahira, and Oromia. However, because it is done manually, it has its limitations. This study proposes a model for sputum smear quality inspection using an ensemble feature extraction approach. The dataset used was recorded and labeled by experts in a regional lab in Bahir Dar, near Felege Hiwot Hospital after being collected from Gabi Hospital, Felege Hiwot Hospital, Adit Clinic and Gondar Hospital, as well as Kidanemihret Clinic in Gondar. We used a controlled environment to reduce environmental influences and eliminate variation. All the data was collected using a smartphone (the standard 15) with a jpg file extension and a pixel resolution of 1,728 × 3,840. Prior to feature extraction, bicubic resizing, and ROI extraction using thresholding was performed. In addition, sequential Gaussian and Gabor filters were used for noise reduction, augmentation, and CLAHE was used for enhancement. For feature extraction, GLCM from the gray label and CNN from the color image were both chosen. Ultimately, when CNN, SVM, and KNN classifiers were used to test both CNN and GLCM features, KNN outperformed them all with scores of 87, 93, and 94% for GLCM, CNN, and a hybrid of CNN and GLCM, respectively. CNN with GLCM outperformed other methods by 0.7 and 0.1% for GLCM and CNN feature extractors using the same classifier, respectively. In addition, the KNN classifier with the combination of CNN and GLCM as feature extractors performed better than existing methods by 1.48%.
Collapse
Affiliation(s)
- Amarech Kiflie
- Faculty of Electrical and Computer Engineering, Arba Minch Institute of Technology, Arba Minch, Ethiopia
| | - Guta Tesema Tufa
- Faculty of Electrical and Computer Engineering, Arba Minch Institute of Technology, Arba Minch, Ethiopia
| | - Ayodeji Olalekan Salau
- Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado Ekiti, Nigeria,Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India,*Correspondence: Ayodeji Olalekan Salau ✉ ; ✉
| |
Collapse
|
4
|
Elaanba A, Ridouani M, Hassouni L. A Stacked Generalization Chest-X-Ray-Based Framework for Mispositioned Medical Tubes and Catheters Detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhan Y, Wang Y, Zhang W, Ying B, Wang C. Diagnostic Accuracy of the Artificial Intelligence Methods in Medical Imaging for Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis. J Clin Med 2022; 12:303. [PMID: 36615102 PMCID: PMC9820940 DOI: 10.3390/jcm12010303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death among infectious diseases worldwide. Early screening and diagnosis of pulmonary tuberculosis (PTB) is crucial in TB control, and tend to benefit from artificial intelligence. Here, we aimed to evaluate the diagnostic efficacy of a variety of artificial intelligence methods in medical imaging for PTB. We searched MEDLINE and Embase with the OVID platform to identify trials published update to November 2022 that evaluated the effectiveness of artificial-intelligence-based software in medical imaging of patients with PTB. After data extraction, the quality of studies was assessed using quality assessment of diagnostic accuracy studies 2 (QUADAS-2). Pooled sensitivity and specificity were estimated using a bivariate random-effects model. In total, 3987 references were initially identified and 61 studies were finally included, covering a wide range of 124,959 individuals. The pooled sensitivity and the specificity were 91% (95% confidence interval (CI), 89-93%) and 65% (54-75%), respectively, in clinical trials, and 94% (89-96%) and 95% (91-97%), respectively, in model-development studies. These findings have demonstrated that artificial-intelligence-based software could serve as an accurate tool to diagnose PTB in medical imaging. However, standardized reporting guidance regarding AI-specific trials and multicenter clinical trials is urgently needed to truly transform this cutting-edge technology into clinical practice.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wendi Zhang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Prasitpuriprecha C, Jantama SS, Preeprem T, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel) 2022; 16:13. [PMID: 36678508 PMCID: PMC9864877 DOI: 10.3390/ph16010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
This research develops the TB/non-TB detection and drug-resistant categorization diagnosis decision support system (TB-DRC-DSS). The model is capable of detecting both TB-negative and TB-positive samples, as well as classifying drug-resistant strains and also providing treatment recommendations. The model is developed using a deep learning ensemble model with the various CNN architectures. These architectures include EfficientNetB7, mobileNetV2, and Dense-Net121. The models are heterogeneously assembled to create an effective model for TB-DRC-DSS, utilizing effective image segmentation, augmentation, and decision fusion techniques to improve the classification efficacy of the current model. The web program serves as the platform for determining if a patient is positive or negative for tuberculosis and classifying several types of drug resistance. The constructed model is evaluated and compared to current methods described in the literature. The proposed model was assessed using two datasets of chest X-ray (CXR) images collected from the references. This collection of datasets includes the Portal dataset, the Montgomery County dataset, the Shenzhen dataset, and the Kaggle dataset. Seven thousand and eight images exist across all datasets. The dataset was divided into two subsets: the training dataset (80%) and the test dataset (20%). The computational result revealed that the classification accuracy of DS-TB against DR-TB has improved by an average of 43.3% compared to other methods. The categorization between DS-TB and MDR-TB, DS-TB and XDR-TB, and MDR-TB and XDR-TB was more accurate than with other methods by an average of 28.1%, 6.2%, and 9.4%, respectively. The accuracy of the embedded multiclass model in the web application is 92.6% when evaluated with the test dataset, but 92.8% when evaluated with a random subset selected from the aggregate dataset. In conclusion, 31 medical staff members have evaluated and utilized the online application, and the final user preference score for the web application is 9.52 out of a possible 10.
Collapse
Affiliation(s)
- Chutinun Prasitpuriprecha
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sirima Suvarnakuta Jantama
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanawadee Preeprem
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Faculty of Science, Buriram University, Buriram 31000, Thailand
| | - Chutchai Kaewta
- Department of Computer Science, Faculty of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|
7
|
Mostafa FA, Elrefaei LA, Fouda MM, Hossam A. A Survey on AI Techniques for Thoracic Diseases Diagnosis Using Medical Images. Diagnostics (Basel) 2022; 12:3034. [PMID: 36553041 PMCID: PMC9777249 DOI: 10.3390/diagnostics12123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Thoracic diseases refer to disorders that affect the lungs, heart, and other parts of the rib cage, such as pneumonia, novel coronavirus disease (COVID-19), tuberculosis, cardiomegaly, and fracture. Millions of people die every year from thoracic diseases. Therefore, early detection of these diseases is essential and can save many lives. Earlier, only highly experienced radiologists examined thoracic diseases, but recent developments in image processing and deep learning techniques are opening the door for the automated detection of these diseases. In this paper, we present a comprehensive review including: types of thoracic diseases; examination types of thoracic images; image pre-processing; models of deep learning applied to the detection of thoracic diseases (e.g., pneumonia, COVID-19, edema, fibrosis, tuberculosis, chronic obstructive pulmonary disease (COPD), and lung cancer); transfer learning background knowledge; ensemble learning; and future initiatives for improving the efficacy of deep learning models in applications that detect thoracic diseases. Through this survey paper, researchers may be able to gain an overall and systematic knowledge of deep learning applications in medical thoracic images. The review investigates a performance comparison of various models and a comparison of various datasets.
Collapse
Affiliation(s)
- Fatma A. Mostafa
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Lamiaa A. Elrefaei
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Aya Hossam
- Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt
| |
Collapse
|
8
|
Iqbal A, Usman M, Ahmed Z. An efficient deep learning-based framework for tuberculosis detection using chest X-ray images. Tuberculosis (Edinb) 2022; 136:102234. [PMID: 35872406 DOI: 10.1016/j.tube.2022.102234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Early diagnosis of tuberculosis (TB) is an essential and challenging task to prevent disease, decrease mortality risk, and stop transmission to other people. The chest X-ray (CXR) is the top choice for lung disease screening in clinics because it is cost-effective and easily accessible in most countries. However, manual screening of CXR images is a heavy burden for radiologists, resulting in a high rate of inter-observer variances. Hence, proposing a cost-effective and accurate computer aided diagnosis (CAD) system for TB diagnosis is challenging for researchers. In this research, we proposed an efficient and straightforward deep learning network called TBXNet, which can accurately classify a large number of TB CXR images. The network is based on five dual convolutions blocks with varying filter sizes of 32, 64, 128, 256 and 512, respectively. The dual convolution blocks are fused with a pre-trained layer in the fusion layer of the network. In addition, the pre-trained layer is utilized for transferring pre-trained knowledge into the fusion layer. The proposed TBXNet has achieved an accuracy of 98.98%, and 99.17% on Dataset A and Dataset B, respectively. Furthermore, the generalizability of the proposed work is validated against Dataset C, which is based on normal, tuberculous, pneumonia, and COVID-19 CXR images. The TBXNet has obtained the highest results in Precision (95.67%), Recall (95.10%), F1-score (95.38%), and Accuracy (95.10%), which is comparatively better than all other state-of-the-art methods.
Collapse
Affiliation(s)
- Ahmed Iqbal
- Predictive Analytics Lab, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan.
| | - Muhammad Usman
- Predictive Analytics Lab, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan
| | - Zohair Ahmed
- Predictive Analytics Lab, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
9
|
Oloko-Oba M, Viriri S. A Systematic Review of Deep Learning Techniques for Tuberculosis Detection From Chest Radiograph. Front Med (Lausanne) 2022; 9:830515. [PMID: 35355598 PMCID: PMC8960068 DOI: 10.3389/fmed.2022.830515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022] Open
Abstract
The high mortality rate in Tuberculosis (TB) burden regions has increased significantly in the last decades. Despite the possibility of treatment for TB, high burden regions still suffer inadequate screening tools, which result in diagnostic delay and misdiagnosis. These challenges have led to the development of Computer-Aided Diagnostic (CAD) system to detect TB automatically. There are several ways of screening for TB, but Chest X-Ray (CXR) is more prominent and recommended due to its high sensitivity in detecting lung abnormalities. This paper presents the results of a systematic review based on PRISMA procedures that investigate state-of-the-art Deep Learning techniques for screening pulmonary abnormalities related to TB. The systematic review was conducted using an extensive selection of scientific databases as reference sources that grant access to distinctive articles in the field. Four scientific databases were searched to retrieve related articles. Inclusion and exclusion criteria were defined and applied to each article to determine those included in the study. Out of the 489 articles retrieved, 62 were included. Based on the findings in this review, we conclude that CAD systems are promising in tackling the challenges of the TB epidemic and made recommendations for improvement in future studies.
Collapse
|
10
|
Classification of Diseases Using Machine Learning Algorithms: A Comparative Study. MATHEMATICS 2021. [DOI: 10.3390/math9151817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Machine learning in the medical area has become a very important requirement. The healthcare professional needs useful tools to diagnose medical illnesses. Classifiers are important to provide tools that can be useful to the health professional for this purpose. However, questions arise: which classifier to use? What metrics are appropriate to measure the performance of the classifier? How to determine a good distribution of the data so that the classifier does not bias the medical patterns to be classified in a particular class? Then most important question: does a classifier perform well for a particular disease? This paper will present some answers to the questions mentioned above, making use of classification algorithms widely used in machine learning research with datasets relating to medical illnesses under the supervised learning scheme. In addition to state-of-the-art algorithms in pattern classification, we introduce a novelty: the use of meta-learning to determine, a priori, which classifier would be the ideal for a specific dataset. The results obtained show numerically and statistically that there are reliable classifiers to suggest medical diagnoses. In addition, we provide some insights about the expected performance of classifiers for such a task.
Collapse
|
11
|
Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Med Image Anal 2021; 72:102125. [PMID: 34171622 DOI: 10.1016/j.media.2021.102125] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Recent advances in deep learning have led to a promising performance in many medical image analysis tasks. As the most commonly performed radiological exam, chest radiographs are a particularly important modality for which a variety of applications have been researched. The release of multiple, large, publicly available chest X-ray datasets in recent years has encouraged research interest and boosted the number of publications. In this paper, we review all studies using deep learning on chest radiographs published before March 2021, categorizing works by task: image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation. Detailed descriptions of all publicly available datasets are included and commercial systems in the field are described. A comprehensive discussion of the current state of the art is provided, including caveats on the use of public datasets, the requirements of clinically useful systems and gaps in the current literature.
Collapse
Affiliation(s)
- Erdi Çallı
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands.
| | - Ecem Sogancioglu
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Bram van Ginneken
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Kicky G van Leeuwen
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| | - Keelin Murphy
- Radboud University Medical Center, Institute for Health Sciences, Department of Medical Imaging, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Luján-García JE, Villuendas-Rey Y, López-Yáñez I, Camacho-Nieto O, Yáñez-Márquez C. NanoChest-Net: A Simple Convolutional Network for Radiological Studies Classification. Diagnostics (Basel) 2021; 11:775. [PMID: 33925844 PMCID: PMC8145173 DOI: 10.3390/diagnostics11050775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The new coronavirus disease (COVID-19), pneumonia, tuberculosis, and breast cancer have one thing in common: these diseases can be diagnosed using radiological studies such as X-rays images. With radiological studies and technology, computer-aided diagnosis (CAD) results in a very useful technique to analyze and detect abnormalities using the images generated by X-ray machines. Some deep-learning techniques such as a convolutional neural network (CNN) can help physicians to obtain an effective pre-diagnosis. However, popular CNNs are enormous models and need a huge amount of data to obtain good results. In this paper, we introduce NanoChest-net, which is a small but effective CNN model that can be used to classify among different diseases using images from radiological studies. NanoChest-net proves to be effective in classifying among different diseases such as tuberculosis, pneumonia, and COVID-19. In two of the five datasets used in the experiments, NanoChest-net obtained the best results, while on the remaining datasets our model proved to be as good as baseline models from the state of the art such as the ResNet50, Xception, and DenseNet121. In addition, NanoChest-net is useful to classify radiological studies on the same level as state-of-the-art algorithms with the advantage that it does not require a large number of operations.
Collapse
Affiliation(s)
| | - Yenny Villuendas-Rey
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Itzamá López-Yáñez
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Oscar Camacho-Nieto
- Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Cornelio Yáñez-Márquez
- Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07700, Mexico
| |
Collapse
|