1
|
Du J, Yang L, Zheng T, Liu D. Radiomics-based predictive model for preoperative risk classification of gastrointestinal stromal tumors using multiparametric magnetic resonance imaging: a retrospective study. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:166-176. [PMID: 39545983 DOI: 10.1007/s00117-024-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE The aim of this study was to develop and assess a radiomics model utilizing multiparametric magnetic resonance imaging (MRI) for the prediction of preoperative risk assessment in gastrointestinal stromal tumors (GISTs). MATERIAL AND METHODS An analysis was performed retrospectively on a group of 121 patients who received a histological diagnosis of GIST. They were then divided into two sets, with 85 in the training set and 36 in the validation set through random partitioning. Radiomics features from five MRI sequences, totaling 600 per patient, were extracted and subjected to feature selection utilizing a random forest algorithm. The discriminatory efficacy of the models was evaluated through receiver operating characteristic (ROC) and precision-recall (P-R) curve analyses. Model calibration was assessed via calibration curves. Subgroup analysis was performed on GISTs with a pathological maximum diameter equal to or less than 5 cm. Furtherly, Kaplan-Meier (K-M) curves and log-rank tests were used to compare the differences in survival status among different groups. Cox regression analysis was employed to identify independent prognostic factors and to construct a prognostic prediction model. RESULTS The clinical model (ModelC) displayed limited predictive efficacy in the context of GIST. Conversely, a radiomics model (ModelR) incorporating five parameters exhibited robust discriminative capabilities across both the training and validation sets, yielding area under the ROC curve (AUC) values of 0.893 (95% confidence interval [CI]: 0.807-0.949) and 0.855 (95% CI: 0.732-0.978), respectively. The F1max scores derived from the P‑R curves were 0.741 and 0.842 for the training and validation sets, respectively. Noteworthy was the exclusion of the two-dimensional tumor diameter and tumor location when constructing a hybrid model (ModelCR) that amalgamated radiomics and clinical features. ModelR demonstrated a substantially enhanced discriminative capacity in the training set compared with ModelC (p < 0.005). The net reclassification improvement (NRI) corroborated the superior performance of ModelR over ModelC, thereby enhancing diagnostic accuracy and clinical applicability. Patients in the high-risk group had significantly worse recurrence-free survival (RFS, p < 0.001) and overall survival (OS, p = 0.004), and the radiomics signature is an independent risk factor for RFS. The extended model incorporating the radiomics signature outperformed the baseline model in terms of risk assessment accuracy (p < 0.001). CONCLUSION Our investigation underscores the value of integrating radiomics analysis in conjunction with machine learning algorithms for prognostic risk stratification in GIST, presenting promising implications for informing clinical decision-making processes as well as optimizing management strategies.
Collapse
Affiliation(s)
- Juan Du
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Linsha Yang
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tao Zheng
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Defeng Liu
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, China.
| |
Collapse
|
2
|
Seoni S, Shahini A, Meiburger KM, Marzola F, Rotunno G, Acharya UR, Molinari F, Salvi M. All you need is data preparation: A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108200. [PMID: 38677080 DOI: 10.1016/j.cmpb.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging. METHODS A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013 and 2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches. RESULTS Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42 %), resampling (increasing the percentage of robust radiomics features from 59.5 % to 89.25 %), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42 % in classification accuracy and 47 % in segmentation Dice scores. CONCLUSIONS Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.
Collapse
Affiliation(s)
- Silvia Seoni
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alen Shahini
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Kristen M Meiburger
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Francesco Marzola
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Giulia Rotunno
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Centre for Health Research, University of Southern Queensland, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
3
|
Li L, Zhang J, Zhe X, Tang M, Zhang L, Lei X, Zhang X. Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: Comparison with traditional MRI. Urol Oncol 2024; 42:176.e9-176.e20. [PMID: 38556403 DOI: 10.1016/j.urolonc.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE To compare biparametric magnetic resonance imaging (bp-MRI) radiomics signatures and traditional MRI model for the preoperative prediction of bladder cancer (BCa) grade. MATERIALS AND METHODS This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa. The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (ADC), vesical imaging reporting and data system, tumor size, and the number of tumors. Volumes of interest were manually drawn on T2-weighted imaging (T2WI) and ADC maps by 2 radiologists. Using one-way analysis of variance, correlation, and least absolute shrinkage and selection operator methods to select features. Then, a logistic regression classifier was used to develop the radiomics signatures. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis was performed by estimating the clinical usefulness of the 2 models. RESULTS The area under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the 3 groups of radiomics model [ADC, T2WI, bp-MRI (ADC and T2WI)] were 0.888, 0.875, and 0.899 in the training cohort and 0.863, 0.805, and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model. decision curve analysis indicated that the radiomics model had higher net benefits than the traditional MRI model. CONCLUSION The bp-MRI radiomics model may help distinguish high-grade and low-grade BCa and outperforming the traditional MRI model. Multicenter validation is needed to acquire high-level evidence for its clinical application.
Collapse
Affiliation(s)
- Longchao Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xia Zhe
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Zhou C, Zhang YF, Guo S, Wang D, Lv HX, Qiao XN, Wang R, Chang DH, Zhao LM, Zhou FH. Multiparametric MRI radiomics in prostate cancer for predicting Ki-67 expression and Gleason score: a multicenter retrospective study. Discov Oncol 2023; 14:133. [PMID: 37470865 PMCID: PMC10361451 DOI: 10.1007/s12672-023-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Prostate cancer (PCa) with high Ki-67 expression and high Gleason Scores (GS) tends to have aggressive clinicopathological characteristics and a dismal prognosis. In order to predict the Ki-67 expression status and the GS in PCa, we sought to construct and verify MRI-based radiomics signatures. METHODS AND MATERIALS We collected T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) images from 170 PCa patients at three institutions and extracted 321 original radiomic features from each image modality. We used support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) logistic regression to select the most informative radiomic features and built predictive models using up sampling and feature selection techniques. Using receiver operating characteristic (ROC) analysis, the discriminating power of this feature was determined. Subsequent decision curve analysis (DCA) assessed the clinical utility of the radiomic features. The Kaplan-Meier (KM) test revealed that the radiomics-predicted Ki-67 expression status and GS were prognostic factors for PCa survival. RESULT The hypothesized radiomics signature, which included 15 and 9 selected radiomics features, respectively, was significantly correlated with pathological Ki-67 and GS outcomes in both the training and validation datasets. Areas under the curve (AUC) for the developed model were 0.813 (95% CI 0.681,0.930) and 0.793 (95% CI 0.621, 0.929) for the training and validation datasets, respectively, demonstrating discrimination and calibration performance. The model's clinical usefulness was verified using DCA. In both the training and validation sets, high Ki-67 expression and high GS predicted by radiomics using SVM models were substantially linked with poor overall survival (OS). CONCLUSIONS Both Ki-67 expression status and high GS correlate with PCa patient survival outcomes; therefore, the ability of the SVM classifier-based model to estimate Ki-67 expression status and the Lasso classifier-based model to assess high GS may enhance clinical decision-making.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Sheng Guo
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Dong Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hao-Xuan Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
| | - Xiao-Ni Qiao
- Department of Information Management, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Rong Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China
- Department of Nuclear Medicine, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - De-Hui Chang
- Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730000, China
| | - Li-Ming Zhao
- Department of Urology, Second People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Feng-Hai Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 73000, China.
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, 730000, China.
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Li C, Deng M, Zhong X, Ren J, Chen X, Chen J, Xiao F, Xu H. Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI. Front Oncol 2023; 13:1198899. [PMID: 37448515 PMCID: PMC10338012 DOI: 10.3389/fonc.2023.1198899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop an imaging model based on multi-parametric MR images for distinguishing between prostate cancer (PCa) and prostate hyperplasia. Methods A total of 236 subjects were enrolled and divided into training and test sets for model construction. Firstly, a multi-view radiomics modeling strategy was designed in which different combinations of radiomics feature categories (original, LoG, and wavelet) were compared to obtain the optimal input feature sets. Minimum-redundancy maximum-relevance (mRMR) selection and least absolute shrinkage selection operator (LASSO) were used for feature reduction, and the next logistic regression method was used for model construction. Then, a Swin Transformer architecture was designed and trained using transfer learning techniques to construct the deep learning models (DL). Finally, the constructed multi-view radiomics and DL models were combined and compared for model selection and nomogram construction. The prediction accuracy, consistency, and clinical benefit were comprehensively evaluated in the model comparison. Results The optimal input feature set was found when LoG and wavelet features were combined, while 22 and 17 radiomic features in this set were selected to construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2 DL models were built by transferring learning from a large number of natural images to a relatively small sample of prostate images. All individual and combined models showed good predictive accuracy, consistency, and clinical benefit. Compared with using only an ADC-based model, adding a T2-based model to the combined model would reduce the model's predictive performance. The ADCCombinedScore model showed the best predictive performance among all and was transformed into a nomogram for better use in clinics. Discussion The constructed models in our study can be used as a predictor in differentiating PCa and BPH, thus helping clinicians make better clinical treatment decisions and reducing unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Jin P, Shen J, Yang L, Zhang J, Shen A, Bao J, Wang X. Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study. BMC Med Imaging 2023; 23:47. [PMID: 36991347 PMCID: PMC10053087 DOI: 10.1186/s12880-023-01002-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose To develop machine learning-based radiomics models derive from different MRI sequences for distinction between benign and malignant PI-RADS 3 lesions before intervention, and to cross-institution validate the generalization ability of the models. Methods The pre-biopsy MRI datas of 463 patients classified as PI-RADS 3 lesions were collected from 4 medical institutions retrospectively. 2347 radiomics features were extracted from the VOI of T2WI, DWI and ADC images. The ANOVA feature ranking method and support vector machine classifier were used to construct 3 single-sequence models and 1 integrated model combined with the features of three sequences. All the models were established in the training set and independently verified in the internal test and external validation set. The AUC was used to compared the predictive performance of PSAD with each model. Hosmer–lemeshow test was used to evaluate the degree of fitting between prediction probability and pathological results. Non-inferiority test was used to check generalization performance of the integrated model. Results The difference of PSAD between PCa and benign lesions was statistically significant (P = 0.006), with the mean AUC of 0.701 for predicting clinically significant prostate cancer (internal test AUC = 0.709 vs. external validation AUC = 0.692, P = 0.013) and 0.630 for predicting all cancer (internal test AUC = 0.637 vs. external validation AUC = 0.623, P = 0.036). T2WI-model with the mean AUC of 0.717 for predicting csPCa (internal test AUC = 0.738 vs. external validation AUC = 0.695, P = 0.264) and 0.634 for predicting all cancer (internal test AUC = 0.678 vs. external validation AUC = 0.589, P = 0.547). DWI-model with the mean AUC of 0.658 for predicting csPCa (internal test AUC = 0.635 vs. external validation AUC = 0.681, P = 0.086) and 0.655 for predicting all cancer (internal test AUC = 0.712 vs. external validation AUC = 0.598, P = 0.437). ADC-model with the mean AUC of 0.746 for predicting csPCa (internal test AUC = 0.767 vs. external validation AUC = 0.724, P = 0.269) and 0.645 for predicting all cancer (internal test AUC = 0.650 vs. external validation AUC = 0.640, P = 0.848). Integrated model with the mean AUC of 0.803 for predicting csPCa (internal test AUC = 0.804 vs. external validation AUC = 0.801, P = 0.019) and 0.778 for predicting all cancer (internal test AUC = 0.801 vs. external validation AUC = 0.754, P = 0.047). Conclusions The radiomics model based on machine learning has the potential to be a non-invasive tool to distinguish cancerous, noncancerous and csPCa in PI-RADS 3 lesions, and has relatively high generalization ability between different date set.
Collapse
Affiliation(s)
- Pengfei Jin
- grid.509676.bDepartment of Radiology, The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, 1# Banshan East Road, Hangzhou, 310022 Zhejiang China
| | - Junkang Shen
- grid.452666.50000 0004 1762 8363Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055# Sanxiang Road, Suzhou, 215000 China
| | - Liqin Yang
- grid.429222.d0000 0004 1798 0228Department of Radiology, The First Affiliated Hospital of SooChow University, 188#, Shizi Road, Suzhou, 215006 Jiangsu China
| | - Ji Zhang
- grid.479690.50000 0004 1789 6747Department of Radiology, Taizhou People’s Hospital of Jiangsu Province, 10# Yigchun Road, Taizhou, 225300 Jiangsu China
| | - Ao Shen
- grid.9227.e0000000119573309Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88# Keling Road, Suzhou, 215163 Jiangsu China
| | - Jie Bao
- grid.429222.d0000 0004 1798 0228Department of Radiology, The First Affiliated Hospital of SooChow University, 188#, Shizi Road, Suzhou, 215006 Jiangsu China
| | - Ximing Wang
- grid.429222.d0000 0004 1798 0228Department of Radiology, The First Affiliated Hospital of SooChow University, 188#, Shizi Road, Suzhou, 215006 Jiangsu China
| |
Collapse
|
7
|
Jamshidi G, Abbasian Ardakani A, Ghafoori M, Babapour Mofrad F, Saligheh Rad H. Radiomics-based machine-learning method to diagnose prostate cancer using mp-MRI: a comparison between conventional and fused models. MAGMA (NEW YORK, N.Y.) 2023; 36:55-64. [PMID: 36114898 DOI: 10.1007/s10334-022-01037-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Multiparametric MRI (mp-MRI) has been significantly used for detection, localization and staging of Prostate cancer (PCa). However, all the assessment suffers from poor reproducibility among the readers. The aim of this study was to evaluate radiomics models to diagnose PCa using high-resolution T2-weighted (T2-W) and dynamic contrast-enhanced (DCE) MRI. MATERIALS AND METHODS Thirty two patients who had high prostate specific antigen level were recruited. The prostate biopsies considered as the reference to differentiate between 66 benign and 36 malignant prostate lesions. 181 features were extracted from each modality. K-nearest neighbors, artificial neural network, decision tree, and linear discriminant analysis were used for machine-learning study. The leave-one-out cross-validation method was used to prevent overfitting and build robust models. RESULTS Radiomics analysis showed that T2-W images were more effective in PCa detection compare to DCE images. Local binary pattern features and speeded up robust features had the highest ability for prediction in T2-W and DCE images, respectively. The classifier fusion using decision template method showed the highest performance with accuracy, specificity, and sensitivity of 100%. DISCUSSION The findings of this framework provide researchers on PCa with a promising method for reliable detection of prostate lesions in MR images by fused model.
Collapse
Affiliation(s)
- Ghazaleh Jamshidi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Abbasian Ardakani
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Ghafoori
- Department of Radiology, School of Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Babapour Mofrad
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
- Quantitative MR Imaging and Spectroscopy Group, Research Center for Cellular and Molecular Imaging, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lu Y, Li B, Huang H, Leng Q, Wang Q, Zhong R, Huang Y, Li C, Yuan R, Zhang Y. Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4∼10 ng/mL. Front Oncol 2022; 12:1020317. [PMID: 36582803 PMCID: PMC9793773 DOI: 10.3389/fonc.2022.1020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Purpose To investigate the predictive performance of the combined model by integrating clinical variables and radiomic features for the accurate detection of prostate cancer (PCa) in patients with prostate-specific antigen (PSA) serum levels of 4-10 ng/mL. Methods A retrospective study of 136 males (mean age, 67.3 ± 8.4 years) with Prostate Imaging-Reporting and Data System (PI-RADS) v2.1 category ≤3 lesions and PSA serum levels of 4-10 ng/mL were performed. All patients underwent multiparametric MRI at 3.0T and transrectal ultrasound-guided systematic prostate biopsy in their clinical workup. Radiomic features were extracted from axial T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) maps of each patient using PyRadiomics. Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were implemented to identify the most significant radiomic features. Independent clinic-radiological factors were identified via univariate and multivariate regression analyses. Seven machine-learning algorithms were compared to construct a single-layered radiomic score (ie, radscore) and multivariate regression analysis was applied to construct the fusion radscore. Finally, the radiomic nomogram was further developed by integrating useful clinic-radiological factors and fusion radscore using multivariate regression analysis. The discriminative power of the nomogram was evaluated by area under the curve (AUC), DeLong test, calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC). Results The transitional zone-specific antigen density was identified as the only independent clinic-radiological factor, which yielded an AUC of 0.592 (95% confidence interval [CI]: 0.527-0.657). The ADC radscore based on six features and Naive Bayes achieved an AUC of 0.779 (95%CI: 0.730-0.828); the T2WI radscore based on 13 features and Support Vector Machine yielded an AUC of 0.808 (95%CI: 0.761-0.855). The fusion radscore obtained an improved AUC of 0.844 (95%CI: 0.801-0.887), which was higher than the single-layered radscores (both P<0.05). The radiomic nomogram achieved the highest value among all models (all P<0.05), with an AUC of 0.872 (95%CI: 0.835-0.909). Calibration curve showed good agreement and DCA together with CIC confirmed the clinical benefits of the radiomic nomogram. Conclusion The radiomic nomogram holds the potential for accurate and noninvasive identification of PCa in patients with PI-RADS ≤3 lesions and PSA of 4-10 ng/mL, which could reduce unnecessary biopsy.
Collapse
Affiliation(s)
- Yangbai Lu
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Binfei Li
- Department of Anesthesiology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Hongxing Huang
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Qu Leng
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Qiang Wang
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Rui Zhong
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Yaqiang Huang
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Canyong Li
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Runqiang Yuan
- Department of Urology, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Yongxin Zhang
- Department of Magnetic Resonance Imaging, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
9
|
Rouvière O, Jaouen T, Baseilhac P, Benomar ML, Escande R, Crouzet S, Souchon R. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts? – A systematic review. Diagn Interv Imaging 2022; 104:221-234. [PMID: 36517398 DOI: 10.1016/j.diii.2022.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to perform a systematic review of the literature on the diagnostic performance, in independent test cohorts, of artificial intelligence (AI)-based algorithms aimed at characterizing/detecting prostate cancer on magnetic resonance imaging (MRI). MATERIALS AND METHODS Medline, Embase and Web of Science were searched for studies published between January 2018 and September 2022, using a histological reference standard, and assessing prostate cancer characterization/detection by AI-based MRI algorithms in test cohorts composed of more than 40 patients and with at least one of the following independency criteria as compared to the training cohort: different institution, different population type, different MRI vendor, different magnetic field strength or strict temporal splitting. RESULTS Thirty-five studies were selected. The overall risk of bias was low. However, 23 studies did not use predefined diagnostic thresholds, which may have optimistically biased the results. Test cohorts fulfilled one to three of the five independency criteria. The diagnostic performance of the algorithms used as standalones was good, challenging that of human reading. In the 12 studies with predefined diagnostic thresholds, radiomics-based computer-aided diagnosis systems (assessing regions-of-interest drawn by the radiologist) tended to provide more robust results than deep learning-based computer-aided detection systems (providing probability maps). Two of the six studies comparing unassisted and assisted reading showed significant improvement due to the algorithm, mostly by reducing false positive findings. CONCLUSION Prostate MRI AI-based algorithms showed promising results, especially for the relatively simple task of characterizing predefined lesions. The best management of discrepancies between human reading and algorithm findings still needs to be defined.
Collapse
Affiliation(s)
- Olivier Rouvière
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Department of Vascular and Urinary Imaging, Lyon 69003, France; Université Lyon 1, Faculté de médecine Lyon Est, Lyon 69003, France; LabTAU, INSERM, U1032, Lyon 69003, France.
| | | | - Pierre Baseilhac
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Department of Vascular and Urinary Imaging, Lyon 69003, France
| | - Mohammed Lamine Benomar
- LabTAU, INSERM, U1032, Lyon 69003, France; University of Ain Temouchent, Faculty of Science and Technology, Algeria
| | - Raphael Escande
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Department of Vascular and Urinary Imaging, Lyon 69003, France
| | - Sébastien Crouzet
- Université Lyon 1, Faculté de médecine Lyon Est, Lyon 69003, France; LabTAU, INSERM, U1032, Lyon 69003, France; Hospices Civils de Lyon, Hôpital Edouard Herriot, Department of Urology, Lyon 69003, France
| | | |
Collapse
|
10
|
Chen T, Zhang Z, Tan S, Zhang Y, Wei C, Wang S, Zhao W, Qian X, Zhou Z, Shen J, Dai Y, Hu J. MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI. Front Oncol 2022; 11:792456. [PMID: 35127499 PMCID: PMC8810653 DOI: 10.3389/fonc.2021.792456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
PurposeTo compare the performance of radiomics to that of the Prostate Imaging Reporting and Data System (PI-RADS) v2.1 scoring system in the detection of clinically significant prostate cancer (csPCa) based on biparametric magnetic resonance imaging (bpMRI) vs. multiparametric MRI (mpMRI).MethodsA total of 204 patients with pathological results were enrolled between January 2018 and December 2019, with 142 patients in the training cohort and 62 patients in the testing cohort. The radiomics model was compared with the PI-RADS v2.1 for the diagnosis of csPCa based on bpMRI and mpMRI by using receiver operating characteristic (ROC) curve analysis.ResultsThe radiomics model based on bpMRI and mpMRI signatures showed high predictive efficiency but with no significant differences (AUC = 0.975 vs 0.981, p=0.687 in the training cohort, and 0.953 vs 0.968, p=0.287 in the testing cohort, respectively). In addition, the radiomics model outperformed the PI-RADS v2.1 in the diagnosis of csPCa regardless of whether bpMRI (AUC = 0.975 vs. 0.871, p= 0.030 for the training cohort and AUC = 0.953 vs. 0.853, P = 0.024 for the testing cohort) or mpMRI (AUC = 0.981 vs. 0.880, p= 0.030 for the training cohort and AUC = 0.968 vs. 0.863, P = 0.016 for the testing cohort) was incorporated.ConclusionsOur study suggests the performance of bpMRI- and mpMRI-based radiomics models show no significant difference, which indicates that omitting DCE imaging in radiomics can simplify the process of analysis. Adding radiomics to PI-RADS v2.1 may improve the performance to predict csPCa.
Collapse
Affiliation(s)
- Tong Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Zhang
- School of Medical Imaging, Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Shuangxiu Tan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing Medical School, Nanjing, China
| | - Yueyue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chaogang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Wang
- Department of Radiology, Jiangsu Jiangyin People’s Hospital, Jiangyin, China
| | - Wenlu Zhao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xusheng Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Imaging Medicine, Soochow University, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| |
Collapse
|
11
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|