1
|
Huang J, Zhu W, Peng M, Yang C, Chen X, Wu T, Zeng D, Zhao Y, Chen X. Cloning, Identification, and Functional Analysis of the Foxl2 Gene in Procambarus clarkii. Genes (Basel) 2023; 14:2190. [PMID: 38137012 PMCID: PMC10743188 DOI: 10.3390/genes14122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Procambarus clarkii is the most widely distributed freshwater shrimp in China, with important economic value and great potential for development. The forkheadboxL2 (Foxl2) gene has been found to be involved in the reproductive development of many crustaceans. To understand the role of the Foxl2 gene in the gonad development of P. clarkii, we designed CDS-specific primers for the P. clarkii Foxl2 (PcFoxl2) gene and cloned its CDS sequence using RT-PCR. The nucleotide and protein sequence information was then analyzed through bioinformatics analysis. The expression and subcellular localization of PcFoxl2 in various tissues were detected using qRT-PCR and in situ hybridization. The effects of PcFoxl2 knockdown on gonad development were investigated using RNA interference. The results showed that the CDS length of the PcFoxl2 gene was 1614 bp and encoded 537 amino acids. Protein sequence comparison and phylogenetic analysis showed that PcFoxl2 was the closest relative to Crayfish. qRT-PCR analysis indicated that the expression level of PcFoxl2 in the testis was significantly higher (>40 fold) than that in the ovary (p < 0.01). The in situ hybridization results showed that PcFoxl2 was expressed in both the cytoplasm and the nucleus of egg cells, and that the expression was strongest in egg cells at the early stage of yolk synthesis, while weak in the secondary oocytes. The positive signal was strongest in the spermatocyte nucleolus, while only a trace signal was observed in the cytoplasm. After interfering with the PcFoxl2 gene using dsRNA, the expression of PcFoxl2 in the RNA interference group was significantly lower than that in the control group, and this interference effect lasted for one week. Moreover, the gonad index of the experimental group was significantly lower than that of the control group (p < 0.05) after 10 days of P. clarkii cultivation following PcFoxl2 knockdown. The expression levels of the nanos and S3a genes, which are related to gonad development, decreased significantly after PcFoxl2 gene interference. The results suggest that the Foxl2 gene is involved in the growth and development of gonads, particularly in the development of testis, and is related to the early development of oocytes. This study provides a theoretical basis for the artificial breeding of P. clarkii.
Collapse
Affiliation(s)
- Jin Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Weilin Zhu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tiejun Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, China; (J.H.); (M.P.); (C.Y.); (X.C.); (T.W.); (D.Z.); (Y.Z.)
| |
Collapse
|
2
|
Screening and validation of reference genes for qPCR analysis in gonads and embryos of Takifugu bimaculatus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Lin X, Zhou D, Zhang X, Li G, Zhang Y, Huang C, Zhang Z, Tian C. A First Insight into the Gonad Transcriptome of Hong Kong Catfish ( Clarias fuscus). Animals (Basel) 2021; 11:1131. [PMID: 33920938 PMCID: PMC8071282 DOI: 10.3390/ani11041131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Hong Kong catfish (Clarias fuscus) exhibit sexual dimorphism, particularly in body size. Due to the fast growth rate of males, the sexual size dimorphism of Hong Kong catfish has become an economically important trait. However, limited knowledge is known about the molecular mechanisms of sex determination and sex differentiation in this species. In this study, a first de novo transcriptome sequencing analysis of testes and ovaries was performed to identify sex-biased genes in Hong Kong catfish. The results showed that a total of 290,291 circular consensus sequences (CCSs) were obtained, from which 248,408 full-length non-chimeric (FLNC) reads were generated. After non-redundant analysis, a total of 37,305 unigenes were predicted, in which 34,342 unigenes were annotated with multiple public databases. Comparative transcriptomic analysis identified 5750 testis-biased differentially expressed genes (DEGs) and 6991 ovary-biased DEGs. The enrichment analysis showed that DEGs were classified into 783 Gene Ontology (GO) terms and 16 Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, androgen secretion, gonadal development and steroid biosynthesis pathways. In addition, the expression levels of 23 unigenes were confirmed to validate the transcriptomic data by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first investigation into the transcriptome of Hong Kong catfish testes and ovaries. This study provides an important molecular basis for the sex determination and sex control breeding of Hong Kong catfish.
Collapse
Affiliation(s)
- Xinghua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dayan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Xiaomin Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Yulei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cailin Huang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Zhixin Zhang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning 530001, China; (D.Z.); (C.H.); (Z.Z.)
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (X.Z.); (G.L.); (Y.Z.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| |
Collapse
|
4
|
Bhat IA, Rather MA, Dar JY, Sharma R. Molecular cloning, computational analysis and expression pattern of forkhead box l2 (Foxl2) gene in catfish. Comput Biol Chem 2016; 64:9-18. [PMID: 27231827 DOI: 10.1016/j.compbiolchem.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/05/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
Foxl2 belongs to forkhead/HNF-3-related family of transcription factors which is involved in ovarian differentiation and development. In present study, the Foxl2 mRNA was cloned from ovary of C. batrachus. The full length cDNA sequence of the Foxl2 was 1056bp which consists of 5' (41bp) and 3' (106bp) non-coding regions, as well as a 909bp of open reading frame (ORF) that encodes 302 amino acids. The putative protein was having the theoretical molecular weight (MW) of 34.018kD and a calculated isoelectric point (pI) of 9.38. There were 11 serine (Ser), 5 threonine (Thr), and 5 tyrosine (Tyr) phosphorylation sites and 2 putative N-glycosylation sites on the predicted protein. The ligand binding sites were predicted to be present on amino acids 42, 49, 50, 91, 92 and 95 respectively. The signal peptide analysis predicted that C. batrachus Foxl2 is a non-secretory protein. The hydropathy profile of Foxl2 protein revealed that this protein is hydrophilic in nature. Protein-protein interaction demonstrated that Foxl2 protein chiefly interacts with cytochrome P450 protein family. The mRNA transcript analysis of various tissues indicated that the C. batrachus Foxl2 mRNA was more expressed in the brain, pituitary and ovary in female while, the former two tissues and testis showed low expression in male. This study provides a basis for further structural and functional exploration of the Foxl2 from C. batrachus, including its deduced protein and its signal transduction function.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Jaffer Yousuf Dar
- Division of Aquatic Environmental Management, Central Institute of Fisheries Education, Mumbai 400061, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai 400061, India.
| |
Collapse
|