1
|
Ramirez K, Fernández R, Collet S, Kiyar M, Delgado-Zayas E, Gómez-Gil E, Van Den Eynde T, T'Sjoen G, Guillamon A, Mueller SC, Pásaro E. Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis. Front Neurosci 2021; 15:701017. [PMID: 34489625 PMCID: PMC8418298 DOI: 10.3389/fnins.2021.701017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population. Methods A global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth. Results The principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others. Strengths and Limitations It is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process. Conclusion The main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.
Collapse
Affiliation(s)
- Karla Ramirez
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain.,Laboratory of Neurophysiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa Fernández
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | - Sarah Collet
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Enrique Delgado-Zayas
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | | | | | - Guy T'Sjoen
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Eduardo Pásaro
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| |
Collapse
|
2
|
Fernández R, Ramírez K, Gómez-Gil E, Cortés-Cortés J, Mora M, Aranda G, Zayas ED, Esteva I, Almaraz MC, Guillamon A, Pásaro E. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020; 17:1795-1806. [PMID: 32636163 DOI: 10.1016/j.jsxm.2020.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes. AIM To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria. METHODS We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program. OUTCOMES The main outcome of this study was RIII analysis using bisulfite genomic sequencing. RESULTS We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups. CLINICAL IMPLICATIONS Clinical implications in the hormonal treatment of trans people. STRENGTHS & LIMITATIONS Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern. CONCLUSIONS Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain.
| | - Karla Ramírez
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, I.D.I.B.A.P.S., Barcelona, Spain
| | - Joselyn Cortés-Cortés
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Enrique Delgado Zayas
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mari Cruz Almaraz
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| |
Collapse
|
3
|
Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence. Sex Med 2020; 8:490-500. [PMID: 32409288 PMCID: PMC7471065 DOI: 10.1016/j.esxm.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Gender incongruence defines a state in which individuals feel discrepancy between the sex assigned at birth and their gender. Some of these people make a social transition from male to female (trans women) or from female to male (trans men). By contrast, the word cisgender describes a person whose gender identity is consistent with their sex assigned at birth. AIM To analyze the implication of the estrogen receptor α gene (ESR1) in the genetic basis of gender incongruence. MAIN OUTCOME MEASURES Polymorphisms rs9478245, rs3138774, rs2234693, rs9340799. METHOD We carried out the analysis of 4 polymorphisms located at the promoter of the ESR1 gene (C1 = rs9478245, C2 = rs3138774, C3 = rs2234693, and C4 = rs9340799) in a population of 273 trans women, 226 trans men, and 537 cis gender controls. For SNP polymorphisms, the allele and genotype frequencies were analyzed by χ2 test. The strength of the SNP associations with gender incongruence was measured by binary logistic regression. For the STR polymorphism, the mean number of repeats were analyzed by the Mann-Whitney U test. Measurement of linkage disequilibrium and haplotype frequencies were also performed. RESULTS The C2 median repeats were shorter in the trans men population. Genotypes S/S and S/L for the C2 polymorphism were overrepresented in the trans men group (P = .012 and P = .003 respectively). We also found overtransmission of the A/A genotype (C4) in the trans men population (P = .017), while the A/G genotype (C4) was subrepresented (P = .009]. The analyzed polymorphisms were in linkage disequilibrium. In the trans men population, the T(C1)-L(C2)-C(C3)-A(C4) haplotype was overrepresented (P = .019) while the T(C1)-L(C2)-C(C3)-G(C4) was subrepresented (P = .005). CONCLUSION The ESR1 is associated with gender incongruence in the trans men population. Fernández R, Delgado-Zayas E,RamírezK, et al. Analysis of Four Polymorphisms Located at the Promoter of the Estrogen Receptor Alpha ESR1 Gene in a Population With Gender Incongruence. Sex Med 2020;8:490-500.
Collapse
|
4
|
Fernández R, Guillamon A, Cortés-Cortés J, Gómez-Gil E, Jácome A, Esteva I, Almaraz M, Mora M, Aranda G, Pásaro E. Molecular basis of Gender Dysphoria: androgen and estrogen receptor interaction. Psychoneuroendocrinology 2018; 98:161-167. [PMID: 30165284 DOI: 10.1016/j.psyneuen.2018.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Polymorphisms in sex steroid receptors have been associated with transsexualism. However, published replication studies have yielded inconsistent findings, possibly because of a limited sample size and/or the heterogeneity of the transsexual population with respect to the onset of dysphoria and sexual orientation. We assessed the role of androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ), and aromatase (CYP19A1) in two large and homogeneous transsexual male-to-female (MtF) and female-to-male (FtM) populations. METHODS The association of each polymorphism with transsexualism was studied with a twofold subject-control analysis: in a homogeneous population of 549 early onset androphilic MtF transsexuals versus 728 male controls, and 425 gynephilic FtMs versus 599 female controls. Associations and interactions were investigated using binary logistic regression. RESULTS Our data show that specific allele and genotype combinations of ERβ, ERα and AR are implicated in the genetic basis of transsexualism, and that MtF gender development requires AR, which must be accompanied by ERβ. An inverse allele interaction between ERβ and AR is characteristic of the MtF population: when either of these polymorphisms is short, the other is long. ERβ and ERα are also associated with transsexualism in the FtM population although there was no interaction between the polymorphisms. Our data show that ERβ plays a key role in the typical brain differentiation of humans. CONCLUSION ERβ plays a key role in human gender differentiation in males and females.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Universidade da Coruña, A Coruña, Spain.
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | - Esther Gómez-Gil
- Unidad de Identidad de Género, Hospital Clínic, Barcelona, Spain.
| | - Amalia Jácome
- Departamento de Matemáticas, Universidade da Coruña, A Coruña, Spain.
| | - Isabel Esteva
- Unidad de Transexualidad e Identidad de Género, Hospital Carlos Haya, Málaga, Spain.
| | - MariCruz Almaraz
- Unidad de Transexualidad e Identidad de Género, Hospital Carlos Haya, Málaga, Spain.
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain.
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain.
| | - Eduardo Pásaro
- Departamento de Psicología, Universidade da Coruña, A Coruña, Spain.
| |
Collapse
|
5
|
Fernández R, Guillamón A, Gómez-Gil E, Esteva I, Almaraz MC, Cortés-Cortés J, Lamas B, Lema E, Pásaro E. Analyses of karyotype by G-banding and high-resolution microarrays in a gender dysphoria population. Genes Genomics 2018; 40:465-473. [DOI: 10.1007/s13258-017-0646-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
|