Jing M, Yang H, Li K, Huang L. Characterization of three new mitochondrial genomes of Coraciiformes (Megaceryle lugubris, Alcedo atthis, Halcyon smyrnensis) and insights into their phylogenetics.
Genet Mol Biol 2020;
43:e20190392. [PMID:
33026411 PMCID:
PMC7539371 DOI:
10.1590/1678-4685-gmb-2019-0392]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Coraciiformes contains more than 200 species with great differences on external
morphology and life-style. The evolutionary relationships within Coraciiformes
and the phylogenetic placement of Coraciiformes in Aves are still questioned.
Mitochondrial genome (mitogenome) sequences are popular markers in molecular
phylogenetic studies of birds. This study presented the genome characteristics
of three new mitogenomes in Coraciiformes and explored the phylogenetic
relationships among Coraciiformes and other five related orders with mitogenome
data of 30 species. The sizes of three mitogenomes were 17,383 bp
(Alcedo atthis), 17,892 bp (Halcyon
smyrnensis) and 17,223 bp (Megaceryle lugubris).
Each mitogenome contained one control region and 37 genes that were common in
vertebrate mitogenomes. The organization of three mitogenomes was identical to
the putative ancestral gene order in Aves. Among 13 available Coraciiform
mitogenomes, 12 protein coding genes showed indications of negative selection,
while the MT-ND6 presented sign of positive selection or relaxed purifying
selection. The phylogenetic results supported that Upupidae and Bucerotidae
should be separated from Coraciiformes, and that Coraciiformes is more closely
related to Piciformes than to Strigiformes, Trogoniformes and Cuculiformes. Our
study provide valuable data for further phylogenetic investigation of
Coraciiformes.
Collapse