1
|
Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings. Int J Biol Macromol 2021; 171:448-456. [PMID: 33421472 DOI: 10.1016/j.ijbiomac.2020.12.222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023]
Abstract
To investigate the effects of Hericium erinaceus polysaccharide (HEP) on immunity in Muscovy duck reovirus (MDRV)-infected ducklings and explore its mechanism of action, an MDRV contact-infection model was established. Then, we investigated the influence of HEP on morphology of main immune organs in MDRV-infected ducklings by HE staining, while antioxidant capacity (T-AOC, MDA), serum protein levels (TP, ALB, GLO), complement levels (C3, C4) and antibody levels (IgA, IgM, IgG) were detected. Apoptotic indexes (apoptosisi rate and FAS-L) were also quantified by TUNEL method and immunohistochemical staining. Meanwhile, FADD and CytC (apoptosis-related genes), were tested by quantitative RT-PCR. Results showed that HEP could reduce the injuries of immune organs caused by MDRV. Additionally, HEP markedly diminished MDA (p < 0.01), while significantly increased T-AOC, TP, ALB, GLO, C3, C4, IgA, IgM and IgG (p < 0.01 or p < 0.05). Then, HEP shifted apoptosis time to an early MDRV-infected stage and reduced apoptosis at later MDRV-infected stage. This was associated with changes of FADD and CytC. Collectively, our data suggested that HEP could reduce the immunesuppression by many ways, such as decreasing organs' injuries, improving antioxidant capacity, serum proteins levels, antibody levels and complement levels, while diminish the apoptosis by lowering the FADD and CytC.
Collapse
|
2
|
Wang Q, Liu M, Chen Y, Xu L, Wu B, Wu Y, Huang Y, Huang WR, Liu HJ. Muscovy duck reovirus p10.8 protein induces ER stress and apoptosis through the Bip/IRE1/XBP1 pathway. Vet Microbiol 2018; 228:234-245. [PMID: 30593373 DOI: 10.1016/j.vetmic.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
In the present study, the mechanisms underlying Muscovy duck reovirus (MDRV) p10.8 protein-induced ER stress and apoptosis in DF-1 cells and Muscovy duckling hepatic tissues were explored. On the fifth day post-infection, an increase in the mRNA levels of binding immunoglobulin protein (Bip) and X-box binding protein (XBP1), activation of XBP1/s, and an increase in percentage of apoptotic cells were observed in Muscovy duckling livers. The use of ER stress inducer Tunicamycin and ER stress inhibitor Tauroursodeoxycholic acid demonstrated that MDRV induces apoptosis via ER stress, leading to apoptosis. The use of Tunicamycin increased viral protein synthesis while Tauroursodeoxycholic acid reduced viral protein synthesis, suggesting that MDRV induces ER stress benefiting virus replication. The MDRV p10.8 is the major protein to induce ER stress and apoptosis. We found that p10.8 promotes the conversion of XBP1/u to XBP1/s and expands ER diameter, and increases the percentages of apoptotic cells in DF-1 and duckling liver tissues. To investigate the mechanism underlying the MDRV p10.8-induced ER stress and apoptosis, Western blot, siRNA, and co-immunoprecipitation (Co-IP) assays were performed. We found that the MDRV p10.8 protein up-regulates Bip, p-IRE1, XBP1s, and cleaved-caspase 3. Co-IP results reveal that the MDRV p10.8 protein disassociates the Bip/IRE1 complex. Inhibition of IRE1 by 4-methyl umbelliferone 8-carbaldehyde (4u8c) dramatically reversed the MDRV p10.8-modulated increase in levels of XBP1s and cleaved-caspase 3. Knockdown of XBP1 by siRNA reversed the increased level of p10.8-modulated cleaved-caspase 3. The present study provides mechanistic insights into the MDRV p10.8 protein induces ER stress, resulting in apoptosis via the Bip/IRE1/XBP1 pathway in DF-1 cells and duckling livers.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China.
| | - Mengxi Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yuan Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Lihui Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Baocheng Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yijan Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, 350002, PR China
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ph.D Program in translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Wang Q, Yuan X, Chen Y, Zheng Q, Xu L, Wu Y. Endoplasmic Reticulum Stress Mediated MDRV p10.8 Protein-Induced Cell Cycle Arrest and Apoptosis Through the PERK/eIF2α Pathway. Front Microbiol 2018; 9:1327. [PMID: 29977231 PMCID: PMC6021497 DOI: 10.3389/fmicb.2018.01327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, the mechanism of Muscovy duck reovirus (MDRV) p10.8 protein-induced pathogenesis was investigated, with a focus on endoplasmic reticulum (ER) stress. In chicken embryo fibroblasts cell lines (DF1), pCI-neo-flg-p10.8 protein transfection increased the phosphorylation (p-) levels of PERK and eIF2α as shown by Western blotting analysis and led to the dissociation of BiP from PERK as shown by co-immunoprecipitation (Co-IP) analysis. Results of treatment with both ER stress activator and inhibitor further confirmed that p10.8 protein induced ER stress. Subsequently, using flow cytometry analysis, it was also found that p10.8 protein induced cell cycle arrest during the G0/G1 phase. Furthermore, p10.8 transfection increased the phosphorylation levels of PERK and eIF2α, and reduced the expression levels of CDK2, CDK4, and Cyclin E according to Western blotting analysis. Treatment with ER stress activator and ER stress inhibitor after p10.8 protein transfection in DF1 cells further indicated that p10.8 protein induced ER stress, which resulted in cell cycle arrest. The results of knockdown of either PERK or eIF2α genes further confirmed that p10.8 protein-induced ER stress led to cell cycle arrest through the PERK/eIF2α pathway. Further results showed that p10.8 protein induced ER stress and apoptosis in DF1 cells. The expression levels of p-PERK, p-eIF2α, CHOP, cleaved-Caspase12, and cleaved-Caspase3 were increased by p10.8 protein. Test results of treatment with each of Tunicamycin, TUDCA and knockdown of PERK, and eIF2α, confirmed that p10.8 protein induced ER stress involving apoptosis via the PERK/eIF2α pathway. In conclusion, MDRV p10.8 protein induced ER stress that caused cell cycle arrest and apoptosis through the PERK/eIF2α pathway.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Yuan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingli Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|