1
|
Elhorany M, El-Horany HE, Abd-Ellatif RN, Dawood LM, Watany MM, Basiouny MA, Hegab II, Alsheikh MY, Kabel AM, Atef MM. The expression and significance of long noncoding RNA XIST/microRNA-340-5p axis and metabolic reprogramming biomarkers in acute cerebrovascular stroke patients: A cross-sectional study. Medicine (Baltimore) 2024; 103:e41092. [PMCID: PMC11688033 DOI: 10.1097/md.0000000000041092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Stroke represents a worldwide major cause of death and long-term adult disability. Various human diseases pathogenesis, including stroke, are associated with dysregulation of long noncoding RNA (LncRNA) and microRNA (miR). However, their potential role is yet to be elucidated. This work aimed to assess the role of LncRNA X-inactive specific transcript (XIST), miR-340-5p, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3 as peripheral blood biomarkers for acute cerebrovascular stroke diagnosis and severity prediction. This cross-sectional study included 120 participants divided into 3 groups; healthy controls, acute ischemic stroke patients, and acute hemorrhagic stroke patients. XIST, miR-340-5p, and PFKFB3 expression were assessed by RT-qPCR, whereas PFKFB3, hypoxia inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) serum proteins were measured by ELISA. Compared to healthy control, XIST and PFKFB3 mRNA expression were significantly upregulated in stroke patients, with the highest levels in hemorrhagic type, while miR-340-5p expression was significantly downregulated and its lowest level was in hemorrhagic stroke. Serum PFKFB3, HIF-1α, and VEGF levels were significantly elevated in stroke patients with the highest levels in hemorrhagic stroke. These biomarkers correlated with National Institute of Health Stroke Scale (NIHSS). Regression analysis using NIHSS as dependent variable confirmed that PFKFB3 mRNA relative expression was the independent predictor (β = 0.7, P = .003). Receiver operating characteristic analyses revealed that XIST, miR-340-5p, and PFKFB3 mRNA relative expression levels were useful biomarkers discriminating ischemic from hemorrhagic stroke (AUC were 0.99, 0.979, and 0.980, respectively). XIST, miR-340-5p, and PFKFB3 might be involved in acute cerebrovascular stroke pathogenesis and progression providing opportunities for early detection and assessing the severity.
Collapse
Affiliation(s)
- Mahmoud Elhorany
- Neuropsychiatry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hemat E. El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Biochemistry Department, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Lamees M. Dawood
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona M. Watany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Mona Y. Alsheikh
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa M. Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Muñoz-Galdeano T, Reigada D, Soto A, Barreda-Manso MA, Ruíz-Amezcua P, Nieto-Díaz M, Maza RM. Identification of a New Role of miR-199a-5p as Factor Implied in Neuronal Damage: Decreasing the Expression of Its Target X-Linked Anti-Apoptotic Protein (XIAP) After SCI. Int J Mol Sci 2024; 25:12374. [PMID: 39596440 PMCID: PMC11594351 DOI: 10.3390/ijms252212374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, contributing to increased neuronal vulnerability. This study investigates the regulatory role of miR-199a-5p on XIAP expression in the context of SCI. Using bioinformatic tools, luciferase reporter assays, and in vitro and in vivo models of SCI, we identified miR-199a-5p as a post-transcriptional regulator of XIAP. Overexpression of miR-199a-5p significantly reduced XIAP protein levels, although no changes were observed at the mRNA level, suggesting translational repression. In vivo, miR-199a-5p expression was upregulated at 3 and 7 days post-injury, while XIAP expression inversely decreased in both neurons and oligodendrocytes, being particularly significant in the latter at 7 dpi. These findings suggest that miR-199a-5p contributes to the downregulation of XIAP and may exacerbate neuronal apoptosis after SCI. Targeting miR-199a-5p could offer a potential therapeutic strategy to modulate XIAP levels and reduce apoptotic cell death in SCI.
Collapse
|
3
|
He X, Yang H, Zheng Y, Zhao X, Wang T. The role of non-coding RNAs in neuropathic pain. Pflugers Arch 2024; 476:1625-1643. [PMID: 39017932 DOI: 10.1007/s00424-024-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Neuropathic pain (NPP) is a refractory pain syndrome, caused by damage or disease of the somatosensory nervous system and characterized by spontaneous pain, hyperalgesia, abnormal pain and sensory abnormality. Non-coding RNAs (ncRNAs), including microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA) and Piwi interacting RNA (piRNA), play a notable role in initiation and maintenance of NPP. In this review, we summarize the role of ncRNAs in NPP and their underlaying mechanism. Generally, ncRNAs are interacted with mRNA, protein or DNA to regulate the molecules and signals assciated with neuroinflammation, ion channels, neurotrophic factors and others, and then involved in the occurrence and development of NPP. Therefore, this review not only contributes to deepen our understanding of the pathophysiological mechanism of NPP, but also provides theoretical basis for the development of new therapy strategies for this disorder.
Collapse
Affiliation(s)
- Xiuying He
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huisi Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Yuexiang Zheng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, P.R. China.
| | - Tinghua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China.
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Vali R, Azadi A, Tizno A, Farkhondeh T, Samini F, Samarghandian S. miRNA contributes to neuropathic pains. Int J Biol Macromol 2023; 253:126893. [PMID: 37730007 DOI: 10.1016/j.ijbiomac.2023.126893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Neuropathic pain (NP) is a kind of chronic pain caused by direct injury to the peripheral or central nervous system (CNS). microRNAs (miRNAs) are small noncoding RNAs that mostly interact with the 3 untranslated region of messenger RNAs (mRNAs) to regulate the expression of multiple genes. NP is characterized by changes in the expression of receptors and mediators, and there is evidence that miRNAs may contribute to some of these alterations. In this review, we aimed to fully comprehend the connection between NP and miRNA; and also, to establish a link between neurology, biology, and dentistry. Studies have shown that targeting miRNAs may be an effective therapeutic strategy for the treatment of chronic pain and potential target for the prevention of NP.
Collapse
Affiliation(s)
- Reyhaneh Vali
- Department of Biology, Faculty of Modern Science, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Azadi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Tizno
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Neuroscience Research Center, Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
5
|
Wu H, Li Z, Yang Y, Zhang L, Yuan Y, Wang Y, Li G, Yang X. Rap1A accelerates homocysteine-induced ANA-1 cells inflammation via synergy of FoxO1 and DNMT3a. Cell Signal 2023; 106:110627. [PMID: 36791985 DOI: 10.1016/j.cellsig.2023.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Abnormal elevation of homocysteine (Hcy) level accelerates atherosclerosis through promote macrophage inflammation, while the precise mechanisms remain to be well elucidated. Previous study revealed that Rap1A is involved in the development of atherosclerosis, but little is known regarding the regulation of macrophage inflammation induced by Hcy and its potential mechanisms. In the present study, we demonstrated that Hcy upregulates Rap1A expression and knockdown of Rap1A inhibited pro-inflammatory cytokines IL-6 and TNF-α levels in ANA-1 cells. Mechanistically, DNMT3a-mediated DNA hypomethylation of Rap1A promoter accelerates Hcy-induced ANA-1 cells inflammation. Furthermore, FoxO1 transcriptionally activate Rap1A by direct binding to its promoter. More importantly, Hcy could enhance FoxO1 interaction with DNMT3a and synergistically promote the expression of Rap1A resulting in accelerate ANA-1 cells inflammation. These data indicate that Rap1A is a novel and important regulator in Hcy-induced ANA-1 cells inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan 75004, China
| | - Zhen Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Yali Yang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lin Zhang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Yin Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanjia Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
6
|
Zhang C, Gao R, Zhou R, Chen H, Liu C, Zhu T, Chen C. The emerging power and promise of non-coding RNAs in chronic pain. Front Mol Neurosci 2022; 15:1037929. [PMID: 36407760 PMCID: PMC9668864 DOI: 10.3389/fnmol.2022.1037929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 08/26/2023] Open
Abstract
Chronic pain (CP) is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage lasting longer than 3 months. CP is the main reason why people seek medical care and exerts an enormous economic burden. Genome-wide expression analysis has revealed that diverse essential genetic elements are altered in CP patients. Although many possible mechanisms of CP have been revealed, we are still unable to meet all the analgesic needs of patients. In recent years, non-coding RNAs (ncRNAs) have been shown to play essential roles in peripheral neuropathy and axon regeneration, which is associated with CP occurrence and development. Multiple key ncRNAs have been identified in animal models of CP, such as microRNA-30c-5p, ciRS-7, and lncRNA MRAK009713. This review highlights different kinds of ncRNAs in the regulation of CP, which provides a more comprehensive understanding of the pathogenesis of the disease. It mainly focuses on the contributions of miRNAs, circRNAs, and lncRNAs to CP, specifically peripheral neuropathic pain (NP), diabetic NP, central NP associated with spinal cord injury, complex regional pain syndrome, inflammatory pain, and cancer-induced pain. In addition, we summarize some potential ncRNAs as novel biomarkers for CP and its complications. With an in-depth understanding of the mechanism of CP, ncRNAs may provide novel insight into CP and could become new therapeutic targets in the future.
Collapse
Affiliation(s)
- Changteng Zhang
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruihao Zhou
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changliang Liu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
8
|
Liao J, Zhang F, Qing W, Yu R, Hu Z. Mechanism of Incisional Pain: Novel Finding on Long Noncoding RNA XIST/miR-340-5p/RAB1A Axis. ASN Neuro 2021; 13:17590914211049056. [PMID: 34806436 PMCID: PMC8613904 DOI: 10.1177/17590914211049056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to investigate the effect of long noncoding RNA (lncRNA) XIST on postoperative pain and inflammation of plantar incision pain (PIP) in rats and its underlying mechanisms. PIP rat models were established by plantar incision. Rats in the sham group were subjected to povidone-iodine scrubbing, and no incision was made. To explore the role of XIST/miR-340-5p/RAB1A in postoperative pain and inflammation, PIP rats were separately or simultaneously injected with lentivirus containing sh-NC, sh-XIST, mimic NC, miR-340-5p mimic, inhibitor NC, miR-340-5p inhibitor, pcDNA3.1, or pcDNA3.1-RAB1A through an intrathecal catheter. The paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) values of rats in each group were assessed to evaluate the pain behavior. RT-qPCR and Western blot were utilized to determine the levels of XIST, miR-340-5p, RAB1A, and NF-κB pathway-related proteins (p-IκBα, IκBα, p-p65, and p65). The concentrations of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in rat spinal dorsal horn tissues were inspected by ELISA. H and E staining was applied to observe the pathological changes of neurons in the spinal dorsal horn, TUNEL staining to detect neuronal apoptosis, and immunohistochemistry to measure RAB1A level. Plantar incision surgery caused decreased PWT and PWL values, enhanced levels of XIST, RAB1A, and inflammatory cytokines, along with an increased proportion of apoptotic neurons. The pain sensitivity and inflammation of rats were motivated after plantar incision surgery. Intrathecal injection of sh-XIST or miR-340-5p mimic ameliorated the pain and inflammation of PIP rats, while silencing of miR-340-5p or overexpression of RAB1A partly reversed the effect of sh-XIST on PIP rats. XIST targeted miR-340-5p and miR-340-5p negatively regulated RAB1A. The XIST/miR-340-5p/RAB1A axis activated the NF-κB signaling pathway. LncRNA XIST aggravates inflammatory response and postoperative pain of PIP rats by activating the NF-κB pathway via the miR-340-5p/RAB1A axis.
Collapse
Affiliation(s)
- Juan Liao
- Department of Anesthesiology, the Third Xiangya Hospital, 504354Central South University, Changsha, Hunan 410013, P.R. China
| | - Fan Zhang
- Department of Anesthesiology, the Third Xiangya Hospital, 504354Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenxiang Qing
- Department of Anesthesiology, the Third Xiangya Hospital, 504354Central South University, Changsha, Hunan 410013, P.R. China
| | - Rili Yu
- Department of Anesthesiology, the Third Xiangya Hospital, 504354Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhonghua Hu
- Department of Anesthesiology, the Third Xiangya Hospital, 504354Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
9
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
10
|
Zhang B, Li H, Zhang J, Hang Y, Xu Y. Overexpression of microRNA-340-5p Ameliorates Inflammatory Response and Intracellular Survival of Mycobacterium Tuberculosis in Alveolar Type II Cells. Infect Drug Resist 2021; 14:1573-1584. [PMID: 33911883 PMCID: PMC8071707 DOI: 10.2147/idr.s291867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background The importance of microRNAs (miRs) has been documented in infections. This study estimated the role of miR-340-5p in Mycobacterium tuberculosis (Mtb)-infected alveolar type II cells. Methods The microarray of GEO database was analyzed to find the differentially expressed miRs caused by Mtb infection, and miR-340-5p was selected as the research object. The effects of Mtb infection on A549 cells were studied by MTT, CFU, EdU, flow cytometry and ELISA assays. miR-340-5p expression was altered in Mtb-infected A549 cells. The downstream target of miR-340-5p was found by bioinformatics analysis and verified by the rescue experiment. The pathways regulated by miR-340-5p and its target gene were further studied. Results Mtb infection suppressed the activity of A549 cells and promoted the release of inflammatory factors. Mtb infection inhibited miR-340-5p expression. Overexpression of miR-340-5p enhanced the resistance of A549 cells to Mtb infection. Moreover, miR-340-5p targeted TMED7. Overexpression of TMED7 reversed the protective effect of miR-340-5p on Mtb-infected A549 cells. miR-340-5p inhibited the activation of NF-κB by targeting TMED7. Conclusion miR-340-5p inhibits the activation of NF-κB by targeting TMED7, thus alleviating the injury of A549 cells caused by Mtb infection. This study may offer a novel approach to Mtb infection.
Collapse
Affiliation(s)
- Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Honglang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jieling Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yaping Hang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yi Xu
- Department of Geriatric Medicine, People's Hospital of Jiangxi Province, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
11
|
Zhou W, Huang G, Ye J, Jiang J, Xu Q. Protective Effect of miR-340-5p against Brain Injury after Intracerebral Hemorrhage by Targeting PDCD4. Cerebrovasc Dis 2020; 49:593-600. [PMID: 33176298 DOI: 10.1159/000508210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is a common cerebrovascular disease. Increasing evidence has documented the crucial role of microRNAs in ICH. The present study aimed to investigate the role and underlying mechanism of miR-340-5p in ICH. METHODS The collagenase-induced ICH rat model was established. The neurological function of rats and the cerebral water content of rat brain tissue were measured to assess the brain injury. BV-2 cells were recruited and treated by LPS to mimic ICH-induced inflammatory response. qRT-PCR was used for the measurement of miR-340-5p. The protein levels of TNF-α, IL-6, and IL-1β were detected using ELISA. Luciferase reporter gene assay was performed to confirm the target gene. RESULTS Downregulation of miR-340-5p was detected in the serum of ICH patients and the brain tissues of ICH rats. Overexpression of miR-340-5p reversed the influence of ICH on the neurological function score and cerebral water content and inhibited the production of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), which were induced by ICH in vivo. In in vitro study, levels of TNF-α, IL-6, and IL-1β were significantly enhanced in cells after LPS treatment, but these increases were eliminated by overexpression of miR-340-5p. PDCD4 was a direct target gene of miR-340-5p. CONCLUSION miR-340-5p protects against brain injury after ICH. miR-340-5p might exert an anti-inflammatory effect during the occurrence of ICH via targeting PDCD4.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Guandong Huang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jueming Ye
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jiamei Jiang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China,
| | - Qing Xu
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| |
Collapse
|
12
|
Tang S, Jing H, Song F, Huang H, Li W, Xie G, Zhou J. MicroRNAs in the Spinal Microglia Serve Critical Roles in Neuropathic Pain. Mol Neurobiol 2020; 58:132-142. [PMID: 32902792 DOI: 10.1007/s12035-020-02102-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neuropathic pain (NP) can occur after peripheral nerve injury (PNI), and it can be converted into a maladaptive, detrimental phenotype that causes a long-term state of pain hypersensitivity. In the last decade, the discovery that dysfunctional microglia evoke pain, called "microgliopathic pain," has challenged traditional neuronal views of "pain" and has been extensively explored. Recent studies have shown that microRNAs (miRNAs) can act as activators or inhibitors of spinal microglia in NP conditions. We first briefly review spinal microglial activation in NP. We then comprehensively describe miRNA expression changes and their potential mechanisms in the response of microglia to nerve injury. We summarize the roles of the following two representative miRNAs: miR-124, which reverses NP by keeping microglia quiescent, and miR-155, which promotes NP following microglial activation. Finally, we focused on the therapeutic potential of microglial miRNAs in NP. The findings we summarized may be essential tools for basic research and clinical treatment of NP.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- Sun Yat-sen University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, People's Republic of China
- ZunYi Medical University, ZunYi, 563100, Guizhou Province, People's Republic of China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Haicheng Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
13
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
14
|
Wang J, Liu G. Protective effect of microRNA‑340‑5p against oxygen‑glucose deprivation/reperfusion in PC12 cells through targeting neuronal differentiation 4. Mol Med Rep 2020; 22:964-974. [PMID: 32468054 PMCID: PMC7339802 DOI: 10.3892/mmr.2020.11174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
The expression levels of microRNA (miR)‑340‑5p are reportedly decreased in the peripheral blood during acute ischemic stroke; however, the direct effect and mechanism of action of miR‑340‑5p in ischemic stroke remains largely unknown. The present study aimed to investigate the effects of miR‑340‑5p, and its mechanism of action, on PC12 cells following oxygen‑glucose deprivation/reperfusion (OGD/R) induction. OGD/R‑induced PC12 cells served as the cellular model and subsequently, mRNA expression levels of miR‑340‑5p and neuronal differentiation 4 (Neurod4) were analyzed using reverse transcription‑quantitative PCR. Tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6 expression levels were detected using ELISA kits, and flow cytometry was used to determine the rate of cellular apoptosis. In addition, a nitric oxide (NO) synthase activity assay kit was used to detect NO levels and a NADPH assay kit was used to measure NADPH levels. Western blotting was also performed to analyze protein expression levels of bax, bcl‑2, cleaved caspase 3 and phosphorylated endothelial NOS (eNOS), and the target gene of miR‑340‑5p was predicted using TargetScan software and verified using a dual‑luciferase reporter assay. The expression levels of miR‑340‑5p were decreased in PC12 cells following OGD/R induction and Neurod4 was identified as a target gene of miR‑340‑5p. In addition, miR‑340‑5p overexpression reduced inflammation, apoptotic rate, NO production and NADPH levels, in addition to increasing eNOS expression in PC12 cells following OGD/R induction. Notably, the overexpression of Neurod4 reversed the aforementioned effects of miR‑340‑5p on PC12 cells following OGD/R induction. In conclusion, the findings of the present study suggested that miR‑340‑5p may protect PC12 cells against OGD/R through targeting Neurod4, which could provide important implications for the treatment of ischemia‑reperfusion injury based on miR‑340‑5p expression levels in vivo.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
15
|
Bao Y, Zhu Y, He G, Ni H, Liu C, Ma L, Zhang L, Shi D. Dexmedetomidine Attenuates Neuroinflammation In LPS-Stimulated BV2 Microglia Cells Through Upregulation Of miR-340. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3465-3475. [PMID: 31631971 PMCID: PMC6781164 DOI: 10.2147/dddt.s210511] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Background Dexmedetomidine (Dex) was reported to exhibit anti-inflammatory effect in the nervous system. However, the mechanism by which Dex exhibits anti-inflammation effects on LPS-stimulated BV2 microglia cells remains unclear. Thus, this study aimed to investigate the role of Dex in LPS-stimulated BV2 cells. Methods The BV2 cells were stimulated by lipopolysaccharides (LPS). BV2 cells were infected with short-hairpin RNAs targeting NF-κB (NF-κB-shRNAs) and NF-κB overexpression lentivirus, respectively. In addition, miR-340 mimics or miR-340 inhibitor was transfected into BV2 cells, respectively. Meanwhile, the dual-luciferase reporter system assay was used to explore the interaction of miR-340 and NF-κB in BV2 cells. CCK-8 was used to detect the viability of BV2 cells. In addition, Western blotting was used to detect the level of NF-κB in LPS-stimulated BV2 cells. The levels of TNF-α, IL-6, IL-1β, IL-2, IL-12, IL-10 and MCP-1 in LPS-stimulated BV2 cells were measured with ELISA. Results The level of miR-340 was significantly upregulated in Dex-treated BV2 cells. Meanwhile, the level of NF-κB was significantly increased in BV2 cells following infection with lenti-NF-κB, which was markedly reversed by Dex. LPS markedly increased the expression of NF-κB and proinflammatory cytokines in BV2 cells, which were reversed in the presence of Dex. Moreover, miR-340 mimics enhanced the anti-inflammatory effects of Dex in LPS-stimulated BV2 cells via inhibiting NF-κB and proinflammatory cytokines. Furthermore, Dex obviously inhibited LPS-induced phagocytosis in BV2 cells. Conclusion Taken together, our results suggested that Dex might exert anti-inflammatory effects in LPS-stimulated BV2 cells via upregulation of miR-340. Therefore, Dex might serve as a potential agent for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Yang Bao
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Yijun Zhu
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Guangbao He
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Hongwei Ni
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Chenxia Liu
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Limin Ma
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| | - Lifeng Zhang
- Department of Anesthesiology, Jiading Maternal and Child Health Hospital, Shanghai 201821, People's Republic of China
| | - Dongping Shi
- Department of Anesthesiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, People's Republic of China
| |
Collapse
|