1
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
2
|
Zhu R, Mathur V. Prophages Present in Acinetobacter pittii Influence Bacterial Virulence, Antibiotic Resistance, and Genomic Rearrangements. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:38-49. [PMID: 36161193 PMCID: PMC9041518 DOI: 10.1089/phage.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Introduction: Antibiotic resistance and virulence are common among bacterial populations, posing a global clinical challenge. The bacterial species Acinetobacter pittii, an infectious agent in clinical environments, has shown increasing rates of antibiotic resistance. Viruses that integrate as prophages into A. pittii could be a potential cause of this pathogenicity, as they often contain antibiotic resistance or virulence factor gene sequences. Methods: In this study, we analyzed 25 A. pittii strains for potential prophages. Using virulence factor databases, we identified many common and virulent prophages in A. pittii. Results: The analysis also included a specific catalogue of the virulence factors and antibiotic resistance genes contributed by A. pittii prophages. Finally, our results illustrate multiple similarities between A. pittii and its bacterial relatives with regard to prophage integration sites and prevalence. Discussion: These findings provide a broader insight into prophage behavior that can be applied to future studies on similar species in the Acinetobacter calcoaceticus-baumannii complex.
Collapse
Affiliation(s)
| | - Vinayak Mathur
- Department of Science, Cabrini University, Radnor, Pennsylvania, USA.,Address correspondence to: Vinayak Mathur, PhD, Department of Science, Cabrini University, 610 King of Prussia Road, IAD 224, Radnor, PA 19087-3698, USA
| |
Collapse
|
3
|
Rocha EM, Marinotti O, Serrão DM, Correa LV, Katak RDM, de Oliveira JC, Muniz VA, de Oliveira MR, do Nascimento Neto JF, Pessoa MCF, Roque RA, da Mota AJ, Onorati P, Souza-Neto JA, Terenius O, Tadei WP. Culturable bacteria associated with Anopheles darlingi and their paratransgenesis potential. Malar J 2021; 20:40. [PMID: 33441101 PMCID: PMC7805163 DOI: 10.1186/s12936-020-03574-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Malaria remains a major public health problem in South America, mostly in the Amazon region. Among newly proposed ways of controlling malaria transmission to humans, paratransgenesis is a promising alternative. Paratransgenesis aims to inhibit the development of parasites within the vector through the action of genetically modified bacteria. The first step towards successful paratransgenesis in the Amazon is the identification of Anopheles darlingi symbiotic bacteria, which are transmitted vertically among mosquitoes, and are not pathogenic to humans. Methods Culturable bacteria associated with An. darlingi and their breeding sites were isolated by conventional microbiological techniques. Isolated strains were transformed with a GFP expressing plasmid, pSPT-1-GFP, and reintroduced in mosquitoes by feeding. Their survival and persistence in the next generation was assessed by the isolation of fluorescent bacteria from eggs, larvae, pupae and adult homogenates. Results A total of 179 bacterial strains were isolated from samples from two locations, Coari and Manaus. The predominant genera identified in this study were Acinetobacter, Enterobacter, Klebsiella, Serratia, Bacillus, Elizabethkingia, Stenotrophomonas and Pantoea. Two isolated strains, Serratia-Adu40 and Pantoea-Ovo3, were successfully transformed with the pSPT-1-GFP plasmid and expressed GFP. The fluorescent bacteria fed to adult females were transferred to their eggs, which persisted in larvae and throughout metamorphosis, and were detected in adult mosquitoes of the next generation. Conclusion Serratia-Adu40 and Pantoea-Ovo3 are promising candidates for paratransgenesis in An. darlingi. Further research is needed to determine if these bacteria are vertically transferred in nature.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | | | | | | | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | | | | | | | | | - Rosemary Aparecida Roque
- Laboratório de Malária E Dengue, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Brazil
| | - Adolfo Jose da Mota
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas - PPGBIOTEC / UFAM, Manaus, Brazil
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Box 7044, 750 07, Uppsala, Sweden
| | - Jayme A Souza-Neto
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multi User Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Box 7044, 750 07, Uppsala, Sweden. .,Department of Cell and Molecular Biology, Microbiology, Uppsala University, Box 596, 751 24, Uppsala, Sweden.
| | - Wanderli Pedro Tadei
- Laboratório de Malária E Dengue, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Brazil.
| |
Collapse
|
4
|
Colquhoun JM, Rather PN. Insights Into Mechanisms of Biofilm Formation in Acinetobacter baumannii and Implications for Uropathogenesis. Front Cell Infect Microbiol 2020; 10:253. [PMID: 32547965 PMCID: PMC7273844 DOI: 10.3389/fcimb.2020.00253] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Multidrug resistant Acinetobacter baumannii is a serious healthcare threat. In fact, the Center for Disease Control recently reported that carbapenem-resistant A. baumannii is responsible for more than 8,500 infections, 700 deaths, and $281 million in healthcare costs annually in the United States with few, if any, treatment options available, leading to its designation as a pathogen of urgent concern and a priority for novel antimicrobial development. It is hypothesized that biofilms are, at least in part, responsible for the high prevalence of A. baumannii nosocomial and recurrent infections because they frequently contaminate hospital surfaces and patient indwelling devices; therefore, there has been a recent push for mechanistic understanding of biofilm formation, maturation and dispersal. However, most research has focused on A. baumannii pneumonia and bloodstream infections, despite a recent retrospective study showing that 17.1% of A. baumannii isolates compiled from clinical studies over the last two decades were obtained from urinary samples. This highlights that A. baumannii is an underappreciated uropathogen. The following minireview will examine our current understanding of A. baumannii biofilm formation and how this influences urinary tract colonization and pathogenesis.
Collapse
Affiliation(s)
- Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States.,Research Service, Atlanta VA Healthcare System, Decatur, GA, United States
| |
Collapse
|