1
|
Demir MF, Lin YH, Costa Cruz PH, Tajima M, Honjo T, Müller E. Blocking S100A9-signaling is detrimental to the initiation of anti-tumor immunity. Front Immunol 2024; 15:1479502. [PMID: 39497822 PMCID: PMC11532050 DOI: 10.3389/fimmu.2024.1479502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
S100A9, a multifunctional protein mainly expressed by neutrophils and monocytes, poses an immunological paradox. In virus infections or sterile inflammation, it functions as an alarmin attracting innate immune cells, as well as mediating proinflammatory effects through TLR4 signaling. However, in cancer, S100A9 levels have been shown to associate with poor prognosis and lack of response to immunotherapy. Its expression by myeloid cells has been related to an immune suppressive phenotype, the so-called myeloid derived suppressor cells (MDSCs). Targeting S100A9 in cancer has therefore been proposed as a potential way to relieve myeloid-mediated immune suppression. Surprisingly, we found that blocking the extracellular TLR4 signaling from S100A9 using the inhibitor Paquinimod, resulted in increased tumor growth and a detrimental effect on anti-PD-L1 efficacy in the CT26 tumor model. This effect was caused by a reduction in the tumor immune infiltration to about half of untreated controls, and the reduction was made up of a 5-fold decrease in Ly6Chigh monocytic cells. The suppressive Ly6G+ myeloid cells compartment was not reduced by Paquinimod treatment, suggesting alternative mechanisms by which S100A9 contributes to myeloid-mediated suppression. Intratumoral injection of recombinant S100A9 early after mice inoculation with CT26 cells had an anti-tumor effect. These findings indicate an important yet understudied role of S100A9 as an alarmin and immune stimulatory signal in cancer settings, and highlight the potential to exploit such signals to promote beneficial anti-tumor responses.
Collapse
Affiliation(s)
- Melike Fusun Demir
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Yu-Hsien Lin
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Pedro Henrique Costa Cruz
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
| | - Elisabeth Müller
- Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto, Japan
- Tumor Immunology Group, Institute of Pathology, Oslo University Hospital, Oslo, Norway
- Therapy Prediction In Lung Cancer, Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
3
|
Chung YH, Volckaert BA, Steinmetz NF. Metastatic Colon Cancer Treatment Using S100A9-Targeted Cowpea Mosaic Virus Nanoparticles. Biomacromolecules 2022; 23:5127-5136. [PMID: 36375170 PMCID: PMC9772157 DOI: 10.1021/acs.biomac.2c00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peritoneal metastases (PMs) occur due to the metastasis of gynecological and gastrointestinal cancers such as ovarian, colon, pancreatic, or gastric tumors. PM outgrowth is often fatal, and patients with PMs have a median survival of 6 months. Cowpea mosaic virus (CPMV) has been shown, when injected intratumorally, to act as an immunomodulator reversing the immunosuppressive tumor microenvironment, therefore turning cold tumors hot and priming systemic antitumor immunity. However, not all tumors are injectable, and PMs especially will require targeted treatments to direct CPMV toward the disseminated tumor nodules. Toward this goal, we designed and tested a CPMV nanoparticle targeted to S100A9, a key immune mediator for many cancer types indicated in cancer growth, invasiveness, and metastasis. Here, we chose to use an intraperitoneal (IP) colon cancer model, and analysis of IP gavage fluid demonstrates that S100A9 is upregulated following IP challenge. S100A9-targeted CPMV particles displaying peptide ligands specific for S100A9 homed to IP-disseminated tumors, and treatment led to improved survival and decreased tumor burden. Targeting CPMV to S100A9 improves preclinical outcomes and harbors the potential of utilizing CPMV for the treatment of IP-disseminated diseases.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Britney A. Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093-0021, United States
| | - Nicole F. Steinmetz
- Corresponding Author: Nicole F. Steinmetz – Department of Bioengineering, Moores Cancer Center, Department of NanoEngineering, Department of Radiology, Institute for Materials Discovery and Design, Center for Nano-Immuno Engineering, and Center for Engineering in Cancer, University of California, San Diego, La Jolla, California 92093-0021, United States;
| |
Collapse
|
4
|
Kurtović M, Piteša N, Bartoniček N, Ozretić P, Musani V, Čonkaš J, Petrić T, King C, Sabol M. RNA-seq and ChIP-seq Identification of Unique and Overlapping Targets of GLI Transcription Factors in Melanoma Cell Lines. Cancers (Basel) 2022; 14:cancers14184540. [PMID: 36139698 PMCID: PMC9497141 DOI: 10.3390/cancers14184540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Despite significant progress in therapy, melanoma still has a rising incidence worldwide, and novel treatment strategies are needed. Recently, researchers have recognized the involvement of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and its consistent crosstalk with the MAPK pathway. In order to further investigate the link between the two pathways and to find new target genes that could be considered for combination therapy, we set out to find transcriptional targets of all three GLI proteins in melanoma. METHODS We performed RNA sequencing on three melanoma cell lines (CHL-1, A375, and MEL224) with overexpressed GLI1, GLI2, and GLI3 and combined them with the results of ChIP-sequencing on endogenous GLI1, GLI2, and GLI3 proteins. After combining these results, 21 targets were selected for validation by qPCR. RESULTS RNA-seq revealed a total of 808 differentially expressed genes (DEGs) for GLI1, 941 DEGs for GLI2, and 58 DEGs for GLI3. ChIP-seq identified 527 genes that contained GLI1 binding sites in their promoters, 1103 for GLI2 and 553 for GLI3. A total of 15 of these targets were validated in the tested cell lines, 6 of which were detected by both RNA-seq and ChIP-seq. CONCLUSIONS Our study provides insight into the unique and overlapping transcriptional output of the GLI proteins in melanoma. We suggest that our findings could provide new potential targets to consider while designing melanoma-targeted therapy.
Collapse
Affiliation(s)
- Matea Kurtović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nikolina Piteša
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Nenad Bartoniček
- The Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
- The Kinghorn Centre for Clinical Genomics, 370 Victoria St., Darlinghurst, NSW 2010, Australia
| | - Petar Ozretić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Josipa Čonkaš
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Tina Petrić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
| | - Cecile King
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maja Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, 10 000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
6
|
Walbrecq G, Lecha O, Gaigneaux A, Fougeras MR, Philippidou D, Margue C, Tetsi Nomigni M, Bernardin F, Dittmar G, Behrmann I, Kreis S. Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12030692. [PMID: 32183388 PMCID: PMC7140034 DOI: 10.3390/cancers12030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial–mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.
Collapse
Affiliation(s)
- Geoffroy Walbrecq
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Odile Lecha
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Miriam R. Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
- Doctoral School in Science and Engineering (DSSE), Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Milène Tetsi Nomigni
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - François Bernardin
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Gunnar Dittmar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.R.F.)
| | - Iris Behrmann
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg; (G.W.); (O.L.); (A.G.); (D.P.); (C.M.); (M.T.N.); (G.D.); (I.B.)
- Correspondence:
| |
Collapse
|