1
|
Ye Z, Liu C, Wu S, Jin X, Lin H, Wang T, Zheng Q, Guo Z. Identification of cuproptosis-related long non-coding RNA and construction of a novel prognostic signature for bladder cancer: An observational study. Medicine (Baltimore) 2024; 103:e38005. [PMID: 38701267 PMCID: PMC11062696 DOI: 10.1097/md.0000000000038005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Bladder Urothelial Carcinoma (BLCA), a prevalent and lethal cancer, lacks understanding regarding the roles and prognostic value of cuproptosis-related lncRNAs (CRLs), a novel form of cell death induced by copper. We collected RNA-seq data, clinical information, and prognostic data for 414 BLCA samples and 19 matched controls from The Cancer Genome Atlas. Using multivariate and univariate Cox regression analyses, we identified CRLs to create a prognostic signature. Patients were then divided into low- and high-risk groups based on their risk scores. We analyzed overall survival using the Kaplan-Meier method, evaluated stromal and immune scores, and explored functional differences between these risk groups with gene set enrichment analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also conducted to understand the links between CRLs and BLCA development. We developed a prognostic signature using 4 independent CRLs: RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1. This signature independently predicted the prognosis of BLCA patients. High-risk patients had worse outcomes, with gene set enrichment analysis revealing enrichment in tumor- and immune-related pathways in the high-risk group. Notably, high-risk patients exhibited enhanced responses to immunotherapy and conventional chemotherapy drugs like sunitinib, paclitaxel, and gemcitabine. The independent prognostic signature variables RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1 predicted the prognoses of BLCA patients and provided a basis for the study of the mechanism of CRLs in BLCA development and progression, and the guidance of clinical treatments for patients with BLCA.
Collapse
Affiliation(s)
- Zegen Ye
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Chunhua Liu
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Simin Wu
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Xinxin Jin
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Huajian Lin
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Tingting Wang
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Qiuxia Zheng
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| | - Zhaofu Guo
- Lishui Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Lishui, Zhejiang 323000, China
| |
Collapse
|
2
|
Wang R, Li X, Zhu S, Zhang D, Han S, Li Z, Lu J, Chu H, Xiao J, Li S. Integrated flow cytometric and proteomics analyses reveal the regulatory network underlying sugarcane protoplast responses to fusion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107918. [PMID: 37619268 DOI: 10.1016/j.plaphy.2023.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Somatic cell fusion is a process that transfers cytoplasmic and nuclear genes to create new germplasm resources. But our limited understanding of the physiological and molecular mechanisms that shape protoplast responses to fusion. METHOD We employed flow cytometry, cytology, proteomics, and gene expression analysis to examine the sugarcane (Saccharum spp.) protoplast fusion. RESULTS Flow cytometry analysis revealed the fusion rate of protoplasts was 1.95%, the FSC value and SSC of heterozygous cells was 1.17-1.47 times higher than that of protoplasts. The protoplasts viability decreased and the MDA increased after fusion. During fusion, the cell membranes were perforated to different degrees, nuclear activity was weakened, while microtubules depolymerized and formed several short rod like structures in the protoplasts. The most abundant proteins during fusion were mainly involved in RNA processing and modification, cell cycle control, cell division, chromosome partition, nuclear structure, extracellular structures, and nucleotide transport and metabolism. Moreover, the expression of key regeneration genes, such as WUS, GAUT, CESA, PSK, Aux/IAA, Cdc2, Cyclin D3, Cyclin A, and Cyclin B, was significantly altered following fusion. PURPOSE AND SIGNIFICANCE Overall, our findings provide a theoretical basis that increases our knowledge of the mechanisms underlying protoplast fusion.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Xinzhu Li
- School of Biomedical Engineering, South-Central Minzu University, No. 182, Minzu Avenue, Wuhan, 430074, China.
| | - Shuifang Zhu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Shijian Han
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Zhigang Li
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiahui Lu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Haiwei Chu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| |
Collapse
|
3
|
Babu N, Bhat MY, John AE, Chatterjee A. The role of proteomics in the multiplexed analysis of gene alterations in human cancer. Expert Rev Proteomics 2021; 18:737-756. [PMID: 34602018 DOI: 10.1080/14789450.2021.1984884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Proteomics has played a pivotal role in identifying proteins perturbed in disease conditions when compared with healthy samples. Study of dysregulated proteins aids in identifying diagnostic markers and potential therapeutic targets. Cancer is an outcome of interplay of several such disarrayed proteins and molecular pathways which perturb cellular homeostasis, resulting in transformation. In this review, we discuss various facets of proteomic approaches, including tools and technological advancements, aiding in understanding differentially expressed molecules and signaling mechanisms. AREAS COVERED In this review, we have taken the approach of documenting the different methods of proteomic studies, ranging from labeling techniques, data analysis methods, and the nature of molecule detected. We summarize each technique and provide a glimpse of cancer research carried out using them, highlighting the advantages and drawbacks in comparison with others. Literature search using online resources, such as PubMed and Google Scholar were carried out for this approach. EXPERT OPINION Technological advancements in proteomics studies have come a long way from the study of two-dimensional mapping of proteins separated on gels in the early 1970s. Higher precision in molecular identification and quantification (high throughput), and greater number of samples analyzed have been the focus of researchers.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
4
|
Tan N, Zhang Y, Zhang Y, Li L, Zong Y, Han W, Liu L. Berberine ameliorates vascular dysfunction by a global modulation of lncRNA and mRNA expression profiles in hypertensive mouse aortae. PLoS One 2021; 16:e0247621. [PMID: 33621262 PMCID: PMC7901729 DOI: 10.1371/journal.pone.0247621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The current study investigated the mechanism underlying the therapeutic effects of berberine in the vasculature in hypertension. Methods Angiotensin II (Ang II)-loaded osmotic pumps were implanted in C57BL/6J mice with or without berberine administration. Mouse aortae were suspended in myograph for force measurement. Microarray technology were performed to analyze expression profiles of lncRNAs and mRNAs in the aortae. These dysregulated expressions were then validated by qRT-PCR. LncRNA-mRNA co-expression network was constructed to reveal the specific relationships. Results Ang Ⅱ resulted in a significant increase in the blood pressure of mice, which was suppressed by berberine. The impaired endothelium-dependent aortic relaxation was restored in hypertensive mice. Microarray data revealed that 578 lncRNAs and 554 mRNAs were up-regulated, while 320 lncRNAs and 377 mRNAs were down-regulated in the aortae by Ang Ⅱ; both were reversed by berberine treatment. qRT-PCR validation results of differentially expressed genes (14 lncRNAs and 6 mRNAs) were completely consistent with the microarray data. GO analysis showed that these verified differentially expressed genes were significantly enriched in terms of “cellular process”, “biological regulation” and “regulation of biological process”, whilst KEGG analysis identified vascular function-related pathways including cAMP signaling pathway, cGMP-PKG signaling pathway, and calcium signaling pathway etc. Importantly, we observed that lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 were majorly expressed in endothelial cells. Conclusion The present results suggest that the five lncRNAs ENSMUST00000144849, NR_028422, ENSMUST00000155383, AK041185, and uc.335+ might serve critical regulatory roles in hypertensive vasculature by targeting pivotal mRNAs and subsequently affecting vascular function-related pathways. Moreover, these lncRNAs were modulated by berberine, therefore providing the novel potential therapeutic targets of berberine in hypertension. Furthermore, lncRNA ENSMUST00000144849, ENSMUST00000155383, and AK041185 might be involved in the preservation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenwen Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|