1
|
Khorani K, Burkart S, Weusthof C, Han R, Liang S, Stögbauer F, Hess J. Context-Dependent Regulation of Peripheral Nerve Abundance by the PI3K Pathway in the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma. Cells 2024; 13:1033. [PMID: 38920662 PMCID: PMC11202044 DOI: 10.3390/cells13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key regulators of cancer development. However, the mode of their interaction with tumor cells or other components of the tumor microenvironment (TME) remains elusive. We established an SC-related 43-gene set as a surrogate for peripheral nerves in the TME. Head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA) were classified into low, intermediate and high SC score groups based on the expression of this gene set. Perineural invasion (PNI) and TGF-β signaling were hallmarks of SChigh tumors, whereas SClow tumors were enriched for HPV16-positive OPSCC and higher PI3K-MTOR activity. The latter activity was partially explained by a higher frequency of PTEN mutation and PIK3CA copy number gain. The inverse association between PI3K-MTOR activity and peripheral nerve abundance was context-dependent and influenced by the TP53 mutation status. An in silico drug screening approach highlighted the potential vulnerabilities of HNSCC with variable SC scores and predicted a higher sensitivity of SClow tumors to DNA topoisomerase inhibitors. In conclusion, we have established a tool for assessing peripheral nerve abundance in the TME and provided new clinical and biological insights into their regulation. This knowledge may pave the way for new therapeutic strategies and impart proof of concept in appropriate preclinical models.
Collapse
Affiliation(s)
- Karam Khorani
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Sebastian Burkart
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Christopher Weusthof
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Rui Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Siyuan Liang
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany and Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80337 Munich, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (S.B.); (C.W.); (R.H.); (S.L.)
| |
Collapse
|
2
|
Tang Q, Xu M, Long S, Yu Y, Ma C, Wang R, Li J, Wang X, Fang F, Han L, Wu W, Wang S. FZKA reverses gefitinib resistance by regulating EZH2/Snail/EGFR signaling pathway in lung adenocarcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116646. [PMID: 37269912 DOI: 10.1016/j.jep.2023.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Kang-Ai (FZKA) decoction is mainly composed of 12 components with different types of herbs. In the last decade, FZKA has been used as an adjuvant treatment for lung cancer in clinical practice. Our previous studies have confirmed that FZKA shows a strong anti-cancer activity, significantly increases the clinical efficacy of gefitinib and reverses gefitinib resistance in non-small cell lung cancer (NSCLC). However, the molecular mechanism still needs to be further elucidated. AIM OF THE STUDY The aim of this study was to investigate the role and mechanism by which FZKA inhibited the cell growth, proliferation and invasion of lung adenocarcinoma(LUAD) and reversed the acquired resistance of gefitinib for the therapy in LUAD. MATERIALS AND METHODS Cell viability assay and EDU assay were used for detecting of cell viability and cell proliferation. Transwell assay was performed to measure cell invasion. Western Blot and qRT-PCR were used for protein and gene expression test. The gene promoter activity was determined by dul-luciferase reporter assay. The in situ expression of protein was measured by cell immunofluorescence. Stabilized cell lines were established for stable overexpression of EZH2. Transient transfection assay was used for gene silence and overexpression. Xenograft tumors and bioluminescent imaging were used for in vivo experiments. RESULTS FZKA significantly inhibited the cell viability, proliferation and cell invasion of LUAD, the combination of FZKA and gefitinib had a great synergy on the above processes. Moreover, FZKA significantly decreased EZH2 mRNA and protein expression, FZKA reversed the resistance of gefitinib by down-regulation of EZH2 protein. ERK1/2 kinase mediated the down-regulation of EZH2 reduced by FZKA. In addition, FZKA decreased the expression of Snail and EGFR by decreasing EZH2. Overexpression of Snail and EGFR significantly reversed the effect of FZKA-inhibited cell invasion and cell proliferation. More important, the combination of FZKA and gefitinib enhanced the inhibitory effect on EZH2, Snail and EGFR proteins. Furthermore, the growth inhibition and reversal of gefitinib resistance induced by FZKA were further validated in vivo. Finally, the expression and clinical correlation of EZH2,EGFR and Snail in cancer patients were further validated using bioinformatics analysis. CONCLUSIONS FZKA significantly suppressed tumor progression and reversed gefitinib resistance by regulating the p-ERK1/2-EZH2-Snail/EGFR signaling pathway in LUAD.
Collapse
Affiliation(s)
- Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Shunqin Long
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Yaya Yu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Changju Ma
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Jing Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Xi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Fang Fang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530000, PR China
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China.
| | - Wanyin Wu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| |
Collapse
|
3
|
Su YF, Lin CS, Shen PC, Chuang SE, Dai YH, Huang TW, Lin CY, Hung YJ, Shieh YS. MiR-34a functions as a tumor suppressor in oral cancer through the inhibition of the Axl/Akt/GSK-3β pathway. J Dent Sci 2024; 19:428-437. [PMID: 38303867 PMCID: PMC10829669 DOI: 10.1016/j.jds.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/14/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Oral cancer is a prevalent malignancy affecting men globally. This study aimed to investigate the regulatory role of miR-34a in oral cancer cells through the Axl/Akt/glycogen synthase kinase-3β (GSK-3β) pathway and its impact on cellular malignancy. Materials and methods We examined the effects of miR-34a overexpression on the malignancy of oral cancer cells. Multiple oral cancer cell lines were assessed to determine the correlation between endogenous miR-34a and Axl levels. Transfection experiments with miR-34a were conducted to analyze its influence on Axl mRNA and protein expression. Luciferase reporter assays were performed to investigate miR-34a's modulation of Axl gene transcription. Manipulation of miR-34a expression was utilized to demonstrate its regulatory effects on oral cancer cells through the Axl/Akt/GSK-3β pathway. Results Overexpression of miR-34a significantly suppressed the malignancy of oral cancer cells. We observed an inverse correlation between endogenous miR-34a and Axl levels across multiple oral cancer cell lines. Transfection of miR-34a resulted in decreased Axl mRNA and protein expression, and luciferase reporter assays confirmed miR-34a-mediated modulation of Axl gene transcription. The study revealed regulatory effects of miR-34a on oral cancer cells through the Axl/Akt/GSK-3β pathway, leading to alterations in downstream target genes involved in cellular proliferation and tumorigenesis. Conclusion Our findings highlight the significance of the miR-34a/Axl/Akt/GSK-3β signaling axis in modulating the malignancy of oral cancer cells. Targeting miR-34a may hold therapeutic potential in oral cancer treatment, as manipulating its expression can attenuate the aggressive behavior of oral cancer cells via the Axl/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Yu-Fu Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Lin
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Ji J, Ding Y, Kong Y, Fang M, Yu X, Lai X, Gu Q. Triple‑negative breast cancer cells that survive ionizing radiation exhibit an Axl‑dependent aggressive radioresistant phenotype. Exp Ther Med 2023; 26:448. [PMID: 37614420 PMCID: PMC10443063 DOI: 10.3892/etm.2023.12147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to investigate the aggressive behavior of triple-negative breast cancer (TNBC) cells that had survived ionizing radiation and explore the potential targets of TNBC combination treatment. Consistent with the previous literature, Axl was highly expressed in TNBC and closely associated with the degree of malignancy based on immunohistochemical staining. Using a gradient irradiation method, the ionizing radiation-resistant mouse TNBC cell line 4T-1/IRR was established. It was found that Axl expression was upregulated in 4T-1/IRR cells. After irradiation by X-ray, the cell viability and colony formation ability of 4T-1/IRR cells were significantly increased when compared with the 4T-1 cells. Combined radiotherapy with Axl inhibition by treatment with R428 and small interfering RNA lentivirus targeting Axl infection significantly reduced cell viability, colony formation ability, DNA double-stranded break repair, and the invasive and migratory ability of 4T-1/IRR cells. In vivo, the small animal radiation research platform was applied to precisely administer radiotherapy of the tumor-bearing mice. R428 treatment combined with 6 Gy X-ray significantly inhibited the growth of 4T-1/IRR cells-derived xenograft tumors in the BALB/c mouse. The results of western blotting showed that the critical molecular mechanism involved in the radioresistance of TNBC cells was the PI3K/Akt/mTOR signaling pathway induced by Axl activation. Thus, it is hypothesized that targeted Axl therapy combined with radiotherapy may have significant potential for the treatment of TNBC.
Collapse
Affiliation(s)
- Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuqin Ding
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Yue Kong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Min Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaofu Yu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojing Lai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Qing Gu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
5
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
6
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
7
|
Circ_0028007 Aggravates the Malignancy of Nasopharyngeal Carcinoma by Regulating miR-656-3p/ELF2 Axis. Biochem Genet 2022; 60:2069-2086. [PMID: 35239093 DOI: 10.1007/s10528-022-10205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Circular RNAs function as important regulators in the pathogenesis of human cancers, including nasopharyngeal carcinoma (NPC). We aimed to explore the functions of circ_0028007 in NPC development. Quantitative real-time polymerase chain reaction assay was employed for the levels of circ_0028007, NUAK family kinase 1, microRNA-656-3p (miR-656-3p), and E74 like ETS transcription factor 2 (ELF2). RNase R assay was used to verify the feature of circ_0028007. Cell Counting Kit-8 assay and colony formation assay were performed to assess cell growth. Wound-healing assay and transwell assay were adopted to analyze cell migration and invasion. Tube formation assay was conducted for cell angiogenic capacity. Flow cytometry analysis was performed for cell apoptosis. Western blot assay was conducted for protein levels. Compared to normal tissues and cells, circ_0028007 level was elevated in NPC tissues and cells. Knockdown of circ_0028007 repressed NPC cell growth, migration, invasion, and angiogenesis, facilitated apoptosis in vitro and blocked tumor growth in vivo. Moreover, circ_0028007 silencing could regulate the AMP-activated protein kinase/mammalian target of rapamycin pathway in NPC cells. Circ_0028007 promoted the malignant behaviors of NPC cells via acting as miR-656-3p sponge. In addition, ELF2 was demonstrated to be the target gene of miR-656-3p. MiR-656-3p overexpression restrained NPC cell malignant phenotypes, while ELF2 elevation reversed the effects. Circ_0028007 contributed to the progression of NPC by decoying miR-656-3p and elevating ELF2. The findings might provide potential targets for NPC therapy.
Collapse
|
8
|
Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B, Majidinia M. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci 2021; 285:119984. [PMID: 34592229 DOI: 10.1016/j.lfs.2021.119984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 01/07/2023]
Abstract
Phosphoinositide-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important proliferative signaling pathways with critical undeniable function in various aspects of cancer initiation/progression, including proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. On the other hand, numerous genetic alterations in the key genes involved in the PI3K/AKT/mTOR signaling pathway have been identified in multiple solid and hematological tumors. In addition, accumulating recent evidences have demonstrated a reciprocal interaction between this signaling pathway and microRNAs, a large group of small non-coding RNAs. Therefore, in this review, it was attempted to discuss about the interaction between key components of PI3K/AKT/mTOR signaling pathway with various miRNAs and their importance in cancer biology.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Department of biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Akbarzadeh
- Department of Physical Education and Sport Medicine, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021; 14:181. [PMID: 34717710 PMCID: PMC8557603 DOI: 10.1186/s13045-021-01198-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gynecological and breast cancers are a group of heterogeneous malignant tumors. Although existing treatment strategies have ameliorated the clinical outcomes of patients, the overall survival rate of advanced diseases remains unsatisfactory. Increasing evidence has indicated that the development and prognosis of tumors are closely related to the tumor microenvironment (TME), which restricts the immune response and provokes malignant progression. Tumor-associated macrophages (TAMs) are the main component of TME and act as a key regulator in tumor metastasis, immunosuppression and therapeutic resistance. Several preclinical trials have studied potential drugs that target TAMs to achieve potent anticancer therapy. This review focuses on the various functions of TAMs and how they influence the carcinogenesis of gynecological and breast cancers through regulating cancer cell proliferation, tumor angiogenesis and tumor-related immunosuppression. Besides, we also discuss the potential application of disabling TAMs signaling as a part of cancer therapeutic strategies, as well as CAR macrophages, TAMs-based vaccines and TAMs nanobiotechnology. These research advances support that targeting TAMs combined with conventional therapy might be used as effective therapeutics for gynecological and breast cancers in the future.
Collapse
Affiliation(s)
- Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Gnanamony M, Demirkhanyan L, Ge L, Sojitra P, Bapana S, Norton JA, Gondi CS. Circular dumbbell miR-34a-3p and -5p suppresses pancreatic tumor cell-induced angiogenesis and activates macrophages. Oncol Lett 2021; 21:75. [PMID: 33365086 PMCID: PMC7716711 DOI: 10.3892/ol.2020.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a tightly regulated biological process by which new blood vessels are formed from pre-existing blood vessels. This process is also critical in diseases such as cancer. Therefore, angiogenesis has been explored as a drug target for cancer therapy. The future of effective anti-angiogenic therapy lies in the intelligent combination of multiple targeting agents with novel modes of delivery to maximize therapeutic effects. Therefore, a novel approach is proposed that utilizes dumbbell RNA (dbRNA) to target pathological angiogenesis by simultaneously targeting multiple molecules and processes that contribute to angiogenesis. In the present study, a plasmid expressing miR-34a-3p and -5p dbRNA (db34a) was constructed using the permuted intron-exon method. A simple protocol to purify dbRNA from bacterial culture with high purity was also developed by modification of the RNASwift method. To test the efficacy of db34a, pancreatic cancer cell lines PANC-1 and MIA PaCa-2 were used. Functional validation of the effect of db34a on angiogenesis was performed on human umbilical vein endothelial cells using a tube formation assay, in which cells transfected with db34a exhibited a significant reduction in tube formation compared with cells transfected with scrambled dbRNA. These results were further validated in vivo using a zebrafish angiogenesis model. In conclusion, the present study demonstrates an approach for blocking angiogenesis using db34a. The data also show that this approach may be used to targeting multiple molecules and pathways.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Liang Ge
- University of Pittsburgh Medical Center, Presbyterian University Hospital, Pittsburgh, PA 15213, USA
| | - Paresh Sojitra
- Sanford Center for Digestive Health, Sioux Falls, SD 57105, USA
| | - Sneha Bapana
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Joseph A. Norton
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Department of Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Correspondence to: Dr Christopher S. Gondi, Department of Internal Medicine, University of Illinois College of Medicine Peoria, 1 Illini Drive, Peoria, IL 61605, USA, E-mail:
| |
Collapse
|
12
|
Ma F, Wang Z, Qiang Y, Xu L, Ding P, Wang Y, Ma X. LukS-PV Inhibits Hepatocellular Carcinoma Cells Migration via the TNNC1/PI3K/AKT Axis. Onco Targets Ther 2020; 13:10221-10230. [PMID: 33116603 PMCID: PMC7578518 DOI: 10.2147/ott.s278540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/24/2020] [Indexed: 02/03/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. LukS-PV is the S component of Panton-Valentine leucocidin (PVL), a toxin secreted by Staphylococcus aureus. We aimed to investigate the role of LukS-PV in HCC cell migration and the specific molecular mechanism involved. Methods We used scratch assays to detect the mobility of liver cancer cells treated with LukS-PV. Quantitative real-time PCR and Western blot analysis were performed to detect the expression levels of related genes. RNA sequencing and quantitative proteomics sequencing were used to assess the transcriptional and proteomic alterations of target genes. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway analyses revealed the downstream signaling pathway targets of LukS-PV. Results Our results demonstrated that LukS-PV could inhibit HCC cell migration in a concentration-dependent manner. LukS-PV could also downregulate the expression of TNNC1, which was highly expressed in HCC cells. Additionally, the study showed that LukS-PV inhibited HCC cell migration by downregulating TNNC1. Further studies showed that LukS-PV inhibited the phosphorylation of PI3K/AKT pathway by targeting TNNC1, thereby inhibiting HCC cell migration. Conclusion Our study demonstrated that LukS-PV has an inhibitory role in the migration of liver cancer cells through the TNNC1/PI3K/AKT axis.
Collapse
Affiliation(s)
- Fan Ma
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ziran Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yawen Qiang
- Department of Obstetrics and Gynecology Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Liangfei Xu
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Pengsheng Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yangyan Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaoling Ma
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|