1
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
2
|
Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, Liu H, Cheng Y. Dysregulation of CREB5 Impairs Decidualization and Maternal-Fetal Interactions by Inhibiting Autophagy in Recurrent Spontaneous Abortion. Reprod Sci 2024; 31:1983-2000. [PMID: 38424407 DOI: 10.1007/s43032-024-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1β and TGF-β1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.
Collapse
Affiliation(s)
- Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei, 430100, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Wen Q, Deng F, Li R, Wang Y, Zhen X, Hang J. Endometrial protein expression and phosphorylation landscape decipher aberrant insulin and mTOR signalling in patients with recurrent pregnancy loss. Reprod Biomed Online 2024; 48:103585. [PMID: 38016376 DOI: 10.1016/j.rbmo.2023.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
RESEARCH QUESTION What are the proteomic and phosphoproteomic differences between the endometrium of women with recurrent pregnancy loss (RPL) and the endometrium of healthy control women during the proliferative and secretory phases of the menstrual cycle? DESIGN In total, 54 endometrial samples were collected during the proliferative and secretory phases from women with RPL (n = 28) and healthy controls (n = 26). Comprehensive proteomic and phosphoproteomic analyses were conducted using label-free liquid chromatography-tandem mass spectrometry (n = 44), and verified through Western blotting (n = 10). Three comparison groups were established: total RPL endometrium versus total control endometrium; RPL proliferative endometrium versus control proliferative endometrium; and RPL secretory endometrium versus control secretory endometrium. RESULTS Differentially expressed proteins and differentially phosphorylated proteins were identified in the three comparison groups. Combining pathway enrichment, network analysis and soft clustering analysis, the insulin/cyclic nucleotide signalling pathway and AMPK/mTOR signalling pathway were identified as the major contributors to the aberration of RPL endometrium. Western blotting verified altered expression of four proteins: cAMP-dependent protein kinase type I-β regulatory subunit, adenylate cyclase type 3, 5'-AMP-activated protein kinase catalytic subunit α-2 and phosphatidate phosphatase LPIN2. CONCLUSIONS This exploratory study provides insights into the differentiated protein expression and phosphorylation profiles of the endometrium of women with RPL in both the proliferative and sectretory phases of the menstrual cycle. The results highlight potential proteins associated with the pathogenesis of RPL that may serve as potential indicators for RPL. The findings contribute to the identification of potential targets for RPL treatment as well as its pathogenesis.
Collapse
Affiliation(s)
- Chao Chen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qi Wen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Feng Deng
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ying Wang
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China.
| | - Jing Hang
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China; National Clinical Research Centre for Obstetrics and Gynaecology, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
4
|
Qin M, Chen W, Hua L, Meng Y, Wang J, Li H, Yang R, Yan L, Qiao J. DNA methylation abnormalities induced by advanced maternal age in villi prime a high-risk state for spontaneous abortion. Clin Epigenetics 2023; 15:44. [PMID: 36945044 PMCID: PMC10029192 DOI: 10.1186/s13148-023-01432-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Advanced maternal age (AMA) has increased in many high-income countries in recent decades. AMA is generally associated with a higher risk of various pregnancy complications, and the underlying molecular mechanisms are largely unknown. In the current study, we profiled the DNA methylome of 24 human chorionic villi samples (CVSs) from early pregnancies in AMA and young maternal age (YMA), 11 CVSs from early spontaneous abortion (SA) cases using reduced representation bisulfite sequencing (RRBS), and the transcriptome of 10 CVSs from AMA and YMA pregnancies with mRNA sequencing(mRNA-seq). Single-cell villous transcriptional atlas presented expression patterns of targeted AMA-/SA-related genes. Trophoblast cellular impairment was investigated through the knockdown of GNE expression in HTR8-S/Vneo cells. RESULTS AMA-induced local DNA methylation changes, defined as AMA-related differentially methylated regions (DMRs), may be derived from the abnormal expression of genes involved in DNA demethylation, such as GADD45B. These DNA methylation changes were significantly enriched in the processes involved in NOTCH signaling and extracellular matrix organization and were reflected in the transcriptional alterations in the corresponding biological processes and specific genes. Furthermore, the DNA methylation level of special AMA-related DMRs not only significantly changed in AMA but also showed more excessive defects in CVS from spontaneous abortion (SA), including four AMA-related DMRs whose nearby genes overlapped with AMA-related differentially expressed genes (DEGs) (CDK11A, C19orf71, COL5A1, and GNE). The decreased DNA methylation level of DMR near GNE was positively correlated with the downregulated expression of GNE in AMA. Single-cell atlas further revealed comparatively high expression of GNE in the trophoblast lineage, and knockdown of GNE in HTR8-S/Vneo cells significantly impaired cellular proliferation and migration. CONCLUSION Our study provides valuable resources for investigating AMA-induced epigenetic abnormalities and provides new insights for explaining the increased risks of pregnancy complications in AMA pregnancies.
Collapse
Affiliation(s)
- Meng Qin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Lingyue Hua
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Yan Meng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing, 100096 China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Hanna Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
- National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191 China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191 China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191 China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China
- Beijing Advanced Innovation Center for Genomics, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing Jishuitan Hospital, Beijing, 100191 China
| |
Collapse
|
5
|
Zhu W, Gu Y, Li M, Zhang Z, Liu J, Mao Y, Zhu Q, Zhao L, Shen Y, Chen F, Xia L, He L, Du J. Integrated single-cell RNA-seq and DNA methylation reveal the effects of air pollution in patients with recurrent spontaneous abortion. Clin Epigenetics 2022; 14:105. [PMID: 35999615 PMCID: PMC9400245 DOI: 10.1186/s13148-022-01327-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Maternal air pollutants exposure is associated with a number of adverse pregnancy outcomes, including recurrent spontaneous abortion (RSA). However, the underlying mechanisms are still unknown. The present study aimed to understand the mechanism of RSA and its relationship with air pollution exposure. We compared data of decidual tissue from individuals with induced abortions and those with RSA by bulk RNA sequencing (RNA-seq), reduced representation bisulfite sequencing (RRBS), and single-cell RNA sequencing (scRNA-seq). Differentially expressed genes (DEGs) were verified using RT-qPCR and pyrosequencing. A logistic regression model was used to investigate the association between air pollutants exposure and RSA. Results We identified 98 DEGs with aberrant methylation by overlapping the RRBS and RNA-seq data. Nineteen immune cell subsets were identified. Compared with normal controls, NK cells and macrophages accounted for different proportions in the decidua of patients with RSA. We observed that the methylation and expression of IGF2BP1 were different between patients with RSA and controls. Furthermore, we observed significant positive associations between maternal air pollutants exposure during the year prior to pregnancy and in early pregnancy and the risk of RSA. Mediation analyses suggested that 24.5% of the effects of air pollution on the risk of RSA were mediated through IGF2BP1 methylation. Conclusion These findings reveal a comprehensive cellular and molecular mechanism of RSA and suggest that air pollution might cause pregnancy loss by affecting the methylation level of the IGF2BP1 promoter. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01327-2.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yan Gu
- Department of Gynecology and Obstetrics Outpatient, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qianxi Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.,Institutes of Biomedical Sciences, The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Fujia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lingjin Xia
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Nikitina TV, Lebedev IN. Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells 2022; 11:1923. [PMID: 35741051 PMCID: PMC9221414 DOI: 10.3390/cells11121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Miscarriage affects approximately 15% of clinically recognized pregnancies, and 1-3% of couples experience pregnancy loss recurrently. Approximately 50-60% of miscarriages result from chromosomal abnormalities, whereas up to 60% of euploid recurrent abortions harbor variants in candidate genes. The growing number of detected genetic variants requires an investigation into their role in adverse pregnancy outcomes. Since placental defects are the main cause of first-trimester miscarriages, the purpose of this review is to provide a survey of state-of-the-art human in vitro trophoblast models that can be used for the functional assessment of specific abnormalities/variants implicated in pregnancy loss. Since 2018, when primary human trophoblast stem cells were first derived, there has been rapid growth in models of trophoblast lineage. It has been found that a proper balance between self-renewal and differentiation in trophoblast progenitors is crucial for the maintenance of pregnancy. Different responses to aneuploidy have been shown in human embryonic and extra-embryonic lineages. Stem cell-based models provide a powerful tool to explore the effect of a specific aneuploidy/variant on the fetus through placental development, which is important, from a clinical point of view, for deciding on the suitability of embryos for transfer after preimplantation genetic testing for aneuploidy.
Collapse
Affiliation(s)
- Tatiana V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia;
| | | |
Collapse
|
7
|
Kim JH, Park HS, Lee JY, Ko EJ, Kim YR, Cho HY, Lee WS, Ahn EH, Kim NK. Association Study between Mucin 4 ( MUC4) Polymorphisms and Idiopathic Recurrent Pregnancy Loss in a Korean Population. Genes (Basel) 2022; 13:937. [PMID: 35741699 PMCID: PMC9222798 DOI: 10.3390/genes13060937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is the loss of two or more consecutive pregnancies before 20 weeks of gestational age. Our study investigated whether mucin 4 (MUC4) polymorphisms are associated with RPL. MUC polymorphisms (rs882605 C>A, rs1104760 A>G, rs2688513 A>G, rs2258447 C>T, and rs2291652 A>G) were genotyped in 374 women with RPL and 239 controls of Korean ethnicity using polymerase chain reaction-restriction fragment length polymorphism analysis and the TaqMan probe SNP genotyping assay. Differences in genotype frequencies between cases of RPL and the controls were compared. MUC4 rs882605 C>A and rs1104760 A>G polymorphisms were associated with increased incidence of RPL in three and four or more pregnancy loss patients. The haplotype analyses showed a tendency for the allelic effect including the association of MUC4 rs882605 A and rs1104760 G alleles with increased incidence of RPL. In addition, the MUC4 rs882605 CA/MUC4 rs2258447 CC genotype combination was associated with increased RPL prevalence. The two exonic polymorphisms lead to amino acid changes of protein and may act as pathogenic variants for RPL. In conclusion, the MUC4 rs882605 C>A and MUC4 rs1104760 A>G polymorphisms were associated with the susceptibility of RPL and we considered them as potential biomarkers for RPL.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Han-Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Jeong-Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Eun-Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Hee-Young Cho
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea;
| | - Woo-Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea;
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (J.-H.K.); (Y.-R.K.)
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.-S.P.); (J.-Y.L.); (E.-J.K.)
| |
Collapse
|
8
|
Cho HY, Park HS, Ahn EH, Ko EJ, Park HW, Kim YR, Kim JH, Lee WS, Kim NK. Association of Polymorphisms in Plasminogen Activator Inhibitor-1 ( PAI-1), Tissue Plasminogen Activator ( tPA), and Renin ( REN) with Recurrent Pregnancy Loss in Korean Women. J Pers Med 2021; 11:jpm11121378. [PMID: 34945850 PMCID: PMC8705673 DOI: 10.3390/jpm11121378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as two or more consecutive pregnancy losses prior to 20 weeks of gestational age. Various factors, including immune dysfunction, endocrine disorders, coagulation abnormality, and genetic disorders influence RPL. In particular, plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and renin (REN) have important roles in the thrombotic and thrombolytic systems, and abnormal expression of these genes have a reported negative correlation with pregnancy maintenance. Moreover, some polymorphisms of the three genes are related to expression levels and thrombotic disorder. Therefore, we investigated whether polymorphisms of PAI-1, tPA, and REN are linked to RPL. Genotyping of the six polymorphisms (PAI-1 rs11178, rs1050955, tPA rs4646972, rs2020918, REN rs1464816, and rs5707) was performed using polymerase chain reaction (PCR)-restriction fragment length polymorphism and associations of the polymorphisms with RPL were evaluated by statistical analysis. The polymorphism PAI-1 rs1050955 GA+AA was associated with decreased RPL risk (AOR, 0.528; 95% CI 0.356–0.781; p = 0.001) as was the REN 10795 rs5707 GG genotype (AOR, 0.487; 95% CI 0.301–0.787; p = 0.003). In contrast, the tPA rs4646972 II genotype correlated with increased RPL risk (AOR, 1.606; 95% CI, 1.047–2.463; p = 0.030). This study provides evidence that tPA Alu rs4646972 may contribute to the risk of idiopathic RPL, but PAI-1 12068 rs1050955 and REN 10795 rs5707 are associated with a decreased risk of RPL. Therefore, these alleles may be useful as biomarkers to evaluate the risk of RPL.
Collapse
Affiliation(s)
- Hee Young Cho
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea;
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.); (H.W.P.)
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (E.H.A.); (Y.R.K.); (J.H.K.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.); (H.W.P.)
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.); (H.W.P.)
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (E.H.A.); (Y.R.K.); (J.H.K.)
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea; (E.H.A.); (Y.R.K.); (J.H.K.)
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea
- Correspondence: (W.S.L.); (N.K.K.); Tel.: +82-2-3468-3406 (W.S.L.); +82-31-881-7137 (N.K.K.)
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea; (H.S.P.); (E.J.K.); (H.W.P.)
- Correspondence: (W.S.L.); (N.K.K.); Tel.: +82-2-3468-3406 (W.S.L.); +82-31-881-7137 (N.K.K.)
| |
Collapse
|
9
|
Zhou Q, Xiong Y, Qu B, Bao A, Zhang Y. DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass? Front Immunol 2021; 12:738962. [PMID: 34745108 PMCID: PMC8566749 DOI: 10.3389/fimmu.2021.738962] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common and severe pathological pregnancy, whose pathogenesis is not fully understood. With the development of epigenetics, the study of DNA methylation, provides a new perspective on the pathogenesis and therapy of RPL. The abnormal DNA methylation of imprinted genes, placenta-specific genes, immune-related genes and sperm DNA may, directly or indirectly, affect embryo implantation, growth and development, leading to the occurrence of RPL. In addition, the unique immune tolerogenic microenvironment formed at the maternal-fetal interface has an irreplaceable effect on the maintenance of pregnancy. In view of these, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of DNA methylation have attracted a lot of research interest. This review summarizes the research progress of DNA methylation involved in the occurrence of RPL and the regulation of the maternal-fetal immune microenvironment. The review provides insights into the personalized diagnosis and treatment of RPL.
Collapse
Affiliation(s)
- Qi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|