1
|
Nirmala NS, Krishnan NB, Vivekanandan V, Thirugnanasambantham K. Anti-inflammatory Potential of Lead Compounds and Their Derivatives from Medicinal Plants. BIOPROSPECTING OF TROPICAL MEDICINAL PLANTS 2023:1199-1232. [DOI: 10.1007/978-3-031-28780-0_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Jo WS, Kim SD, Jeong SK, Oh SJ, ParK MT, Lee CG, Kang YR, Jeong MH. Resveratrol analogue, HS-1793, inhibits inflammatory mediator release from macrophages by interfering with the TLR4 mediated NF-κB activation. Food Sci Biotechnol 2022; 31:433-441. [PMID: 35464242 PMCID: PMC8994813 DOI: 10.1007/s10068-022-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022] Open
Abstract
Resveratrol is known to have anti-inflammatory properties. However, high-dose resveratrol is required for optimal anti-inflammatory effects. HS-1793 is a derivative designed to be metabolically stable and more effective than resveratrol. We tested whether HS-1793 also has anti-inflammatory activity. HS-1793 effectively inhibited the mRNA and protein expression of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in macrophages. Therefore, the production of nitric oxide (NO) and prostaglandin E2 (PGE2) was significantly attenuated. In addition, HS-1793 completely suppressed the production of inflammatory cytokines enhanced by LPS treatment along with a decrease in Toll-like receptor 4 (TLR4) expression. At the same time, the expression of myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase 1 (IRAK1), and TNF receptor-associated factor 6 (TRAF6) signaling molecules and the nuclear translocation of nuclear factor kappa B (NF-κB)/p65 were also downregulated. We conclusively suggest that HS-1793 also exhibits anti-inflammatory properties by effectively inhibiting TLR4-mediated NF-κB activation.
Collapse
Affiliation(s)
- Wol Soon Jo
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Sung Dae Kim
- grid.258803.40000 0001 0661 1556Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea
| | - Soo Kyung Jeong
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
- grid.255166.30000 0001 2218 7142Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan, 49236 Republic of Korea
| | - Su Jung Oh
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Moon Taek ParK
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Chang Geun Lee
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Young- Rok Kang
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Min Ho Jeong
- grid.255166.30000 0001 2218 7142Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan, 49236 Republic of Korea
| |
Collapse
|
3
|
Liu Y, Li Y, Zhu Y, Zhang L, Ji J, Gui M, Li C, Song Y. Study of Anti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch ( BmK). Toxins (Basel) 2021; 13:toxins13070498. [PMID: 34357970 PMCID: PMC8310270 DOI: 10.3390/toxins13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Buthus martensii Karsch (BmK), is a kind of traditional Chinese medicine, which has been used for a long history for the treatment of many diseases, such as inflammation, pain and cancer. In this study, DKK-SP1/2/3 genes were screened and extracted from the cDNA library of BmK. The DKK-SP1/2/3 were expressed by using plasmid pSYPU-1b in E. coli BL21, and recombinant proteins were obtained by column chromatography. In the xylene-induced mouse ear swelling and carrageenan-induced rat paw swelling model, DKK-SP1 exerted a significant anti-inflammatory effect by inhibiting the expression of Nav1.8 channel. Meanwhile, the release of pro-inflammatory cytokines (COX-2, IL-6) was decreased significantly and the release of anti-inflammatory cytokines (IL-10) were elevated significantly. Moreover, DKK-SP1 could significantly decrease the Nav1.8 current in acutely isolated rat DRG neurons. In the acetic acid-writhing and ION-CCI model, DKK-SP2 displayed significant analgesic activity by inhibiting the expression of the Nav1.7 channel. Moreover, DKK-SP2 could significantly inhibit the Nav1.7 current in the hNav1.7-CHO cells.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Yan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Yuchen Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Liping Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Junyu Ji
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Mingze Gui
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Chunli Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| | - Yongbo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| |
Collapse
|
4
|
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci 2019; 20:E4367. [PMID: 31491986 PMCID: PMC6770891 DOI: 10.3390/ijms20184367] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today's era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer's disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs.
Collapse
Affiliation(s)
- Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Banappa S Unger
- Pharmacology & Toxicology Division, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sateesh Belemkar
- School of Pharmacy and Technology Management, SVKM's NMIMS, MPTP, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Sanjay J Surana
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Dist- Dhule, Maharashtra, India.
| |
Collapse
|