1
|
Proteins Derived from Cnidium officinale Makino React with Serum IgE of Allergic Patients and Stimulate ERK/NF-kB Activation in Human Mast Cell Line HMC-1 Cells. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Discover and identify unknown alkylation DNA adducts induced by sulfonates using prediction driven -MRM-profiling strategy. Talanta 2021; 222:121500. [PMID: 33167213 DOI: 10.1016/j.talanta.2020.121500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023]
Abstract
Alkylated DNA adducts are the most important and common form of DNA damage at the molecular level. In addition to known alkylated DNA adducts, many unknown DNA adducts remain to be discovered. A prediction-driven MRM profiling MS strategy has been established for the rapid discovery of unknown DNA adducts induced by sulfonates. The innovative aspects and core of this strategy are the construction of the prediction MRM list, which includes 36 possible precursor ion and characteristic product ion transitions of DNA adducts based on MS fragmentation patterns, and then unknown DNA adducts 7-propyl guanine and 7-butyl guanine were discovered based on the diagnostic MRM signals of the DNA samples, and subsequently confirmed using high-resolution MS data and synthetic standards for the first time. Furthermore, DNA adducts, including newly found adducts in a human cell model and rat tissues after nitrosamine and sulfonate exposure, were unambiguously investigated by a UHPLC-MS/MS method. As a result, different alkyl methanesulfonates, including methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), PMS and BMS, all lead to the formation of 7MeG in addition to their own specific alkylation DNA adducts. The ester group of the sulfonate determines the specific types of DNA adducts produced, and the sulfonate might undergo transesterification with the methyl donors that commonly exist in eukaryotic organisms such as SAM, resulting in the formation of MMS, which induce the generation of methyl DNA adducts after EMS, PMS and BMS exposure. Furthermore, similar DNA adduct profiles were presented in both human cells and rat tissues. This approach could be useful in the future for probing unknown DNA adducts and simultaneously profiling both known and unknown DNA adducts in both in vitro to in vivo settings to evaluate potential genotoxicities and cancer risks to populations exposed to genotoxins.
Collapse
|
3
|
Nepal MR, Noh K, Shah S, Bist G, Lee ES, Jeong TC. Identification of DNA and glutathione adducts in male Sprague-Dawley rats exposed to 1-bromopropane. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:502-513. [PMID: 31140386 DOI: 10.1080/15287394.2019.1622830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Occupational exposure of workers to 1-bromopropane (1-BP) has raised concerns in industry for many years. Despite the known toxicity of this chemical, molecular events attributed to exposure to 1-BP have not been extensively studied. The aim of the present study was to examine the effects of 1-BP exposure on adduct formation with DNA and glutathione (GSH) in male Sprague-Dawley rats in an attempt to determine the early stages of toxicity. Following 6 h after either single or daily exposure to 1-BP for 3 days, N7-propyl guanine and S-propyl GSH were quantified in several organs by using liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that N7-propyl guanine was maximally formed in liver followed by spleen, testes, and lung in both dose- and time-dependent manners. However, DNA adduct was not detected in cardiac tissue. In the case of S-propyl GSH, this compound was formed in the following order in various organs: liver > testes > spleen > kidney > lung > heart. In a subsequent in vitro study, formation of N7-propyl guanine initiated by 1-BP in calf thymus DNA was not markedly affected by addition of liver homogenates, which indicated that this chemical may be acting as a direct alkylating agent. In contrast, an in vitro study with free GSH demonstrated that 1-BP reduced GSH and elevated production of S-propyl GSH, and that the production of this adduct was significantly higher in the presence of active liver homogenates. Data indicated that formation of GSH adducts initiated by 1-BP might be associated with an enzyme-driven process. Although further characterization is necessary, it would appear that N7-propyl guanine and S-propyl GSH might serve as useful markers in cases of exposure assessment of 1-BP.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Keumhan Noh
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Sajita Shah
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Ganesh Bist
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Eung Seok Lee
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- a College of Pharmacy , Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
4
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
5
|
Chang YJ, Cooke MS, Hu CW, Chao MR. Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures. Arch Toxicol 2018; 92:2665-2680. [PMID: 29943112 DOI: 10.1007/s00204-018-2252-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Adductomics is expected to be useful in the characterization of the exposome, which is a new paradigm for studying the sum of environmental causes of diseases. DNA adductomics is emerging as a powerful method for detecting DNA adducts, but reliable assays for its widespread, routine use are currently lacking. We propose a novel integrated strategy for the establishment of a DNA adductomic approach, using liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS), operating in constant neutral loss scan mode, screening for both known and unknown DNA adducts in a single injection. The LC-QqQ-MS/MS was optimized using a representative sample of 23 modified 2'-deoxyribonucleosides reflecting a range of biologically relevant DNA lesions. Six internal standards (ISTDs) were evaluated for their ability to normalize, and hence correct, possible variation in peak intensities arising from matrix effects, and the quantities of DNA injected. The results revealed that, with appropriate ISTDs adjustment, any bias can be dramatically reduced from 370 to 8.4%. Identification of the informative DNA adducts was achieved by triggering fragmentation spectra of target ions. The LC-QqQ-MS/MS method was successfully applied to in vitro and in vivo studies to screen for DNA adducts formed following representative environmental exposures: methyl methanesulfonate (MMS) and five N-nitrosamines. Interestingly, five new DNA adducts, induced by MMS, were discovered using our adductomic approach-an added strength. The proposed integrated strategy provides a path forward for DNA adductomics to become a standard method to discover differences in DNA adduct fingerprints between populations exposed to genotoxins, and facilitate the field of exposomics.
Collapse
Affiliation(s)
- Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Chiung-Wen Hu
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan. .,Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|