1
|
Garcia MR, Andrade PB, Lefranc F, Gomes NGM. Marine-Derived Leads as Anticancer Candidates by Disrupting Hypoxic Signaling through Hypoxia-Inducible Factors Inhibition. Mar Drugs 2024; 22:143. [PMID: 38667760 PMCID: PMC11051506 DOI: 10.3390/md22040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
- 1H-TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Nelson G. M. Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (M.R.G.); (P.B.A.)
| |
Collapse
|
2
|
Schlosser J, Fedorova O, Fedorov Y, Ihmels H. Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[ c]quinolizinium ions. Beilstein J Org Chem 2024; 20:101-117. [PMID: 38264449 PMCID: PMC10804566 DOI: 10.3762/bjoc.20.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
The photoreactions of selected styrylpyridine derivatives to the corresponding benzo[c]quinolizinium ions are described. It is shown that these reactions are more efficient in aqueous solution (97-44%) than in organic solvents (78-20% in MeCN). The quinolizinium derivatives bind to DNA by intercalation with binding constants of 6-11 × 104 M-1, as shown by photometric and fluorimetric titrations as well as by CD- and LD-spectroscopic analyses. These ligand-DNA complexes can also be established in situ upon irradiation of the styrylpyridines and formation of the intercalator directly in the presence of DNA. In addition to the DNA-binding properties, the tested benzo[c]quinolizinium derivatives also operate as photosensitizers, which induce DNA damage at relative low concentrations and short irradiation times, even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Olga Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yuri Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
3
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
4
|
Okoro CO, Fatoki TH. A Mini Review of Novel Topoisomerase II Inhibitors as Future Anticancer Agents. Int J Mol Sci 2023; 24:ijms24032532. [PMID: 36768852 PMCID: PMC9916523 DOI: 10.3390/ijms24032532] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Several reviews of inhibitors of topoisomerase II have been published, covering research before 2018. Therefore, this review is focused primarily on more recent publications with relevant points from the earlier literature. Topoisomerase II is an established target for anticancer drugs, which are further subdivided into poisons and catalytic inhibitors. While most of the topoisomerase II-based drugs in clinical use are mostly topoisomerase II poisons, their mechanism of action has posed severe concern due to DNA damaging potential, including the development of multi-drug resistance. As a result, we are beginning to see a gradual paradigm shift towards non-DNA damaging agents, such as the lesser studied topoisomerase II catalytic inhibitors. In addition, this review describes some novel selective catalytic topoisomerase II inhibitors. The ultimate goal is to bring researchers up to speed by curating and delineating new scaffolds as the leads for the optimization and development of new potent, safe, and selective agents for the treatment of cancer.
Collapse
|
5
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
6
|
Alshaer W, Zraikat M, Amer A, Nsairat H, Lafi Z, Alqudah DA, Al Qadi E, Alsheleh T, Odeh F, Alkaraki A, Zihlif M, Bustanji Y, Fattal E, Awidi A. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Adv 2019; 9:30976-30988. [PMID: 35529392 PMCID: PMC9072562 DOI: 10.1039/c9ra05636j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023] Open
Abstract
Echinomycin, a DNA bis-intercalator peptide, belongs to the family of quinoxaline antibiotics. Echinomycin exhibits potent antitumor and antimicrobial activity. However, it is highly water insoluble and suffers from low bioavailability and unwanted side effects. Therefore, developing new formulations and delivery systems that can enhance echinomycin solubility and therapeutic potency is needed for further clinical application. In this study, echinomycin has been complexed into the hydrophobic cavity of γ-cyclodextrin (γCD) then encapsulated into PEGylated liposomes. The anti-proliferative and anti-invasive effect has been evaluated against U-87 MG glioblastoma cells. Echinomycin-in-γCD inclusion complexes have been characterized by phase solubility assay, TLC, and 1H-NMR. The echinomycin-in-γCD inclusion complexes have been loaded into liposomes using a thin film hydration method to end up with echinomycin-in-γCD-in-liposomes. Drug-loaded liposomes were able to inhibit cell proliferation with IC50 of 1.0 nM. Moreover, echinomycin-in-γCD-in-liposomes were found to inhibit the invasion of U-87 MG cells using the spheroid gel invasion assay. In conclusion, the current work describes for the first time γCD-echinomycin complexes and their encapsulation into PEGylated liposomes.
Collapse
Affiliation(s)
- Walhan Alshaer
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Manar Zraikat
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Amer Amer
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Hamdi Nsairat
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Zainab Lafi
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
| | - Enas Al Qadi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Tasneem Alsheleh
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Fadwa Odeh
- Department of Chemistry, Faculty of Science, The University of Jordan Amman Jordan
| | - Arwa Alkaraki
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan Amman Jordan
| | - Yasser Bustanji
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan Amman Jordan
- HMCSR, The University of Jordan Amman Jordan
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry France
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan PO Box: 5825 Amman Jordan +962 6 5355000 ext. 23960 +962 790823678 +962 795277455
- Department of Hematology, Jordan University Hospital, The University of Jordan Amman Jordan
| |
Collapse
|
7
|
Zhou S, Xiao K, Huang D, Wu W, Xu Y, Xia W, Huang X. Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
W. Gribble G, A. Obaza-Nutaitis J. Synthesis and Cytotoxicity of Novel Bis-Ellipticines and Bis-Isoellipticines. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ratnayake AS, Chang LP, Tumey LN, Loganzo F, Chemler JA, Wagenaar M, Musto S, Li F, Janso JE, Ballard TE, Rago B, Steele GL, Ding W, Feng X, Hosselet C, Buklan V, Lucas J, Koehn FE, O'Donnell CJ, Graziani EI. Natural Product Bis-Intercalator Depsipeptides as a New Class of Payloads for Antibody-Drug Conjugates. Bioconjug Chem 2018; 30:200-209. [PMID: 30543418 DOI: 10.1021/acs.bioconjchem.8b00843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.
Collapse
Affiliation(s)
- Anokha S Ratnayake
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Li-Ping Chang
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - L Nathan Tumey
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Frank Loganzo
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Joseph A Chemler
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Melissa Wagenaar
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Sylvia Musto
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Fengping Li
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Jeffrey E Janso
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - T Eric Ballard
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Brian Rago
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Greg L Steele
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - WeiDong Ding
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Xidong Feng
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Christine Hosselet
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Vlad Buklan
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Judy Lucas
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Frank E Koehn
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Christopher J O'Donnell
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Edmund I Graziani
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|