1
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
2
|
Malla S, Nyinawabera A, Neupane R, Pathak R, Lee D, Abou-Dahech M, Kumari S, Sinha S, Tang Y, Ray A, Ashby CR, Yang MQ, Babu RJ, Tiwari AK. Novel Thienopyrimidine-Hydrazinyl Compounds Induce DRP1-Mediated Non-Apoptotic Cell Death in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2024; 16:2621. [PMID: 39123351 PMCID: PMC11311031 DOI: 10.3390/cancers16152621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.
Collapse
Affiliation(s)
- Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Rajiv Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Donghyun Lee
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Mariam Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India;
| | - Yuan Tang
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Aniruddha Ray
- Department of Physics, College of Math’s and Natural Sciences, University of Toledo, Toledo, OH 43606, USA;
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11439, USA;
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program of University of Arkansas at Little Rock, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA;
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (S.M.); (A.N.); (R.N.); (D.L.); (M.A.-D.); (S.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
3
|
Cho CH, Lim W, Sim WJ, Lim TG. Oral administration of collagen peptide in SKH-1 mice suppress UVB-induced wrinkle and dehydration through MAPK and MAPKK signaling pathways, in vitro and in vivo evidence. Food Sci Biotechnol 2024; 33:955-967. [PMID: 38371682 PMCID: PMC10866847 DOI: 10.1007/s10068-023-01362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 02/20/2024] Open
Abstract
Skin aging is induced by exposure to extrinsic factors, causing various diseases and adversely affecting aesthetics. Studies have suggested that as the quality of life improves, demand for beauty and nutritional cosmetics increases. Here, the protective effects of collagen peptide against UV-induced skin damage were evaluated in vitro and in vivo. Collagen peptide inhibited water loss and UVB irradiation-induced HA degradation in the skin of SKH-1 mice. Additionally, collagen peptide dose-dependently inhibited UVB-induced wrinkle formation, epidermal thickness, and elastase activity. These results suggest that collagen peptide regulates collagen degradation through the MAPK and MAPKK pathway. In addition, collagen peptide administration did not affect changes in weight of the liver, spleen, and kidney, or enzymatic indicators of liver damage. Taken together, oral administration of collagen peptide improved the effects of UV-induced skin aging without toxicity. Therefore, this study supports the development of collagen peptide for skin aging prevention in nutricosmetic products. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01362-6.
Collapse
Affiliation(s)
- Cheol Hyeon Cho
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Wonchul Lim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
4
|
Ye S, Wang X, Chen R. A novel classification predicts prognosis and drug sensitivity in osteosarcoma based on alterations in gene sets. Aging (Albany NY) 2024; 16:4579-4590. [PMID: 38428404 PMCID: PMC10968677 DOI: 10.18632/aging.205614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Osteosarcoma is a cancer originating in the bone cells, specifically in the osteoblasts. Previous studies mainly focused on particular molecules but the whole pathway network. We comprehensively analyzed the enrichment score of each signal pathway and identified a novel classification by 20 machine learning algorithms. Furthermore, differences in tumor immune infiltration cells and drug sensitivity were compared in low and high groups. We identified a model consisting of four signaling pathways that predict the prognosis and the immune status of the tumor microenvironment and drug sensitivity in osteosarcoma patients. The novel classification may be used in clinical applications to predict prognosis and drug sensitivity.
Collapse
Affiliation(s)
- Shuxi Ye
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Xiaopeng Wang
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| | - Rongchun Chen
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Lim YJ, Kim HS, Bae S, So KA, Kim TJ, Lee JH. Pan-EGFR Inhibitor Dacomitinib Resensitizes Paclitaxel and Induces Apoptosis via Elevating Intracellular ROS Levels in Ovarian Cancer SKOV3-TR Cells. Molecules 2024; 29:274. [PMID: 38202856 PMCID: PMC10780346 DOI: 10.3390/molecules29010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.
Collapse
Affiliation(s)
- Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| |
Collapse
|
6
|
Nizami ZN, Aburawi HE, Semlali A, Muhammad K, Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants (Basel) 2023; 12:1159. [PMID: 37371889 DOI: 10.3390/antiox12061159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that regulate various cellular processes. However, at high levels, ROS induce oxidative stress, which in turn can trigger cell death. Cancer cells alter the redox homeostasis to facilitate protumorigenic processes; however, this leaves them vulnerable to further increases in ROS levels. This paradox has been exploited as a cancer therapeutic strategy with the use of pro-oxidative drugs. Many chemotherapeutic drugs presently in clinical use, such as cisplatin and doxorubicin, induce ROS as one of their mechanisms of action. Further, various drugs, including phytochemicals and small molecules, that are presently being investigated in preclinical and clinical studies attribute their anticancer activity to ROS induction. Consistently, this review aims to highlight selected pro-oxidative drugs whose anticancer potential has been characterized with specific focus on phytochemicals, mechanisms of ROS induction, and anticancer effects downstream of ROS induction.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire-Université Laval, Quebec, QC G1V 0A6, Canada
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Song J, Cheng M, Xie Y, Li K, Zang X. Efficient tumor synergistic chemoimmunotherapy by self-augmented ROS-responsive immunomodulatory polymeric nanodrug. J Nanobiotechnology 2023; 21:93. [PMID: 36927803 PMCID: PMC10018933 DOI: 10.1186/s12951-023-01842-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy has emerged as a promising therapeutic strategy for cancer therapy. However, the therapeutic efficacy has been distracted due to poor immunogenicity and immunosuppressive tumor microenvironment. In this study, a self-augmented reactive oxygen species (ROS) responsive nanocarrier with immunogenic inducer paclitaxel (PTX) and indoleamine 2,3-dixoygenase 1 (IDO1) blocker 1-methyl-D, L-tryptophan (1-MT) co-entrapment was developed for tumor rejection. The carrier was composed of poly (ethylene glycol) (PEG) as hydrophilic segments, enzyme cleavable 1-MT ester and ROS-sensitive peroxalate conjugation as hydrophobic blocks. The copolymer could self-assemble into prodrug-based nanoparticles with PTX, realizing a positive feedback loop of ROS-accelerated PTX release and PTX induced ROS generation. Our nanoparticles presented efficient immunogenic cell death (ICD) which provoked antitumor immune responses with high effector T cells infiltration. Meanwhile immunosuppressive tumor microenvironment was simultaneously modulated with reduced regulatory T cells (Tregs) and M2-tumor associated macrophages (M2-TAMs) infiltration mediated by IDO inhibition. The combination of PTX and 1-MT achieved significant primary tumor regression and reduction of lung metastasis in 4T1 tumor bearing mice. Therefore, the above results demonstrated co-delivery of immunogenic inducer and IDO inhibitor using the ROS amplifying nanoplatform with potent potential for tumor chemoimmunotherapy.
Collapse
Affiliation(s)
- Jinxiao Song
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Mingyang Cheng
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Yi Xie
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, People's Republic of China.
| |
Collapse
|
8
|
Kim DY, Park S, Yun J, Jang W, Rethineswaran VK, Van LTH, Giang LTT, Choi J, Lim HJ, Kwon SM. Oleuropein induces apoptosis in colorectal tumor spheres via mitochondrial fission. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Triple negative breast cancer: approved treatment options and their mechanisms of action. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04189-6. [PMID: 35976445 DOI: 10.1007/s00432-022-04189-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Breast cancer, the most prevalent cancer worldwide, consists of 4 main subtypes, namely, Luminal A, Luminal B, HER2-positive, and Triple-negative breast cancer (TNBC). Triple-negative breast tumors, which do not express estrogen, progesterone, and HER2 receptors, account for approximately 15-20% of breast cancer cases. The lack of traditional receptor targets contributes to the heterogenous, aggressive, and refractory nature of these tumors, resulting in limited therapeutic strategies. METHODS Chemotherapeutics such as taxanes and anthracyclines have been the traditional go to treatment regimens for TNBC patients. Paclitaxel, docetaxel, doxorubicin, and epirubicin have been longstanding, Food and Drug Administration (FDA)-approved therapies against TNBC. Additionally, the FDA approved PARP inhibitors such as olaparib and atezolizumab to be used in combination with chemotherapies, primarily to improve their efficiency and reduce adverse patient outcomes. The immunotherapeutic Keytruda was the latest addition to the FDA-approved list of drugs used to treat TNBC. RESULTS The following review aims to elucidate current FDA-approved therapeutics and their mechanisms of action, shedding a light on the various strategies currently used to circumvent the treatment-resistant nature of TNBC cases. CONCLUSION The recent approval and use of therapies such as Trodelvy, olaparib and Keytruda has its roots in the development of an understanding of signaling pathways that drive tumour growth. In the future, the emergence of novel drug delivery methods may help increase the efficiency of these therapies whiel also reducing adverse side effects.
Collapse
|
10
|
Miguel RDA, Hirata AS, Jimenez PC, Lopes LB, Costa-Lotufo LV. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022; 14:1722. [PMID: 36015347 PMCID: PMC9415580 DOI: 10.3390/pharmaceutics14081722] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.
Collapse
Affiliation(s)
- Rodrigo dos A. Miguel
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Amanda S. Hirata
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Paula C. Jimenez
- Institute of the Sea, Federal University of Sao Paulo, Santos 11070-100, Brazil
| | - Luciana B. Lopes
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Leticia V. Costa-Lotufo
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
- Department of Human Biology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
11
|
Tan P, Cai H, Wei Q, Tang X, Zhang Q, Kopytynski M, Yang J, Yi Y, Zhang H, Gong Q, Gu Z, Chen R, Luo K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021; 277:121061. [PMID: 34508957 DOI: 10.1016/j.biomaterials.2021.121061] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Patient-derived xenograft (PDX) models are powerful tools for understanding cancer biology and drug discovery. In this study, a polymeric nano-sized drug delivery system poly (OEGMA)-PTX@Ce6 (NPs@Ce6) composed of a photosensitizer chlorin e6 (Ce6) and a cathepsin B-sensitive polymer-paclitaxel (PTX) prodrug was constructed. The photochemical internalization (PCI) effect and enhanced chemo-photodynamic therapy (PDT) were achieved via a two-stage light irradiation strategy. The results showed that the NPs@Ce6 had great tumor targeting and rapid cellular uptake induced by PCI, thereby producing excellent anti-tumor effects on human bladder cancer PDX models with tumor growth inhibition greater than 98%. Bioinformatics analysis revealed that the combination of PTX chemotherapy and PDT up-regulated oxidative phosphorylation and reactive oxygen species (ROS) generation, blocked cell cycle and proliferation, and down-regulated the pathways related to tumor progression, invasion and metastasis, including hypoxia, TGF-β signaling and TNF-α signaling pathways. Western blots analysis confirmed that proteins promoting apoptosis (Bax, Cleaved caspase-3, Cleaved PARP) and DNA damage (γH2A.X) were up-regulated, while those inhibiting apoptosis (Bcl-2) and mitosis (pan-actin and α/β-tubulin) were down-regulated after chemo-PDT treatment. Therefore, this stimuli-responsive polymer-PTX prodrug-based nanomedicine with combinational chemotherapy and PDT evaluated in the PDX models could be a potential candidate for bladder cancer therapy.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Cai
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodi Tang
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qianfeng Zhang
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Junxiao Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Yi
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA, 91711, USA
| | - Qiyong Gong
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Zhongwei Gu
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Kui Luo
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Sazonova EV, Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov 2021; 7:155. [PMID: 34226520 PMCID: PMC8257727 DOI: 10.1038/s41420-021-00554-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer therapy is aimed at the elimination of tumor cells and acts via the cessation of cell proliferation and induction of cell death. Many research publications discussing the mechanisms of anticancer drugs use the terms "cell death" and "apoptosis" interchangeably, given that apoptotic pathways are the most common components of the action of targeted and cytotoxic compounds. However, there is sound evidence suggesting that other mechanisms of drug-induced cell death, such as necroptosis, ferroptosis, autophagy, etc. may significantly contribute to the fate of cancer cells. Molecular cross-talks between apoptotic and nonapoptotic death pathways underlie the successes and the failures of therapeutic interventions. Here we discuss the nuances of the antitumor action of two groups of the widely used anticancer drugs, i.e., platinum salts and taxane derivatives. The available data suggest that intelligent interference with the choice of cell death pathways may open novel opportunities for cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia.
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
13
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|