1
|
Savino W, Lepletier A. Thymus-derived hormonal and cellular control of cancer. Front Endocrinol (Lausanne) 2023; 14:1168186. [PMID: 37529610 PMCID: PMC10389273 DOI: 10.3389/fendo.2023.1168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The thymus gland is a central lymphoid organ in which developing T cell precursors, known as thymocytes, undergo differentiation into distinct type of mature T cells, ultimately migrating to the periphery where they exert specialized effector functions and orchestrate the immune responses against tumor cells, pathogens and self-antigens. The mechanisms supporting intrathymic T cell differentiation are pleiotropically regulated by thymic peptide hormones and cytokines produced by stromal cells in the thymic microenvironment and developing thymocytes. Interestingly, in the same way as T cells, thymic hormones (herein exemplified by thymosin, thymulin and thymopoietin), can circulate to impact immune cells and other cellular components in the periphery. Evidence on how thymic function influences tumor cell biology and response of patients with cancer to therapies remains unsatisfactory, although there has been some improvement in the knowledge provided by recent studies. Herein, we summarize research progression in the field of thymus-mediated immunoendocrine control of cancer, providing insights into how manipulation of the thymic microenvironment can influence treatment outcomes, including clinical responses and adverse effects of therapies. We review data obtained from clinical and preclinical cancer research to evidence the complexity of immunoendocrine interactions underpinning anti-tumor immunity.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
2
|
Fukuda T, Suzuki E, Fukuda R. Bone morphogenetic protein signaling is a possible therapeutic target in gynecologic cancer. Cancer Sci 2023; 114:722-729. [PMID: 36468782 PMCID: PMC9986083 DOI: 10.1111/cas.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily. BMPs play crucial roles in embryogenesis and bone remodeling. Recently, BMP signaling has been found to have diverse effects on different types of tumors. In this review, we summarized the effects of BMP signaling on gynecologic cancer. BMP signaling has tumor-promoting effects on ovarian cancer (OC) and endometrial cancer (EC), whereas it has tumor-suppressing effects on uterine cervical cancer (UCC). Interestingly, EC has frequent gain-of-function mutations in ACVR1, encoding one of the type I BMP receptors, which are also observed in fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. Little is known about the relationship between BMP signaling and other gynecologic cancers. Tumor-promoting effects of BMP signaling in OC and EC are dependent on the promotion of cancer stemness and epithelial-mesenchymal transition (EMT). In accordance, BMP receptor kinase inhibitors suppress the cell growth and migration of OC and EC. Since both cancer stemness and EMT are associated with chemoresistance, BMP signaling activation might also be an important mechanism by which OC and EC patients acquire chemoresistance. Therefore, BMP inhibitors are promising for OC and EC patients even if they become resistant to standard chemotherapy. In contrast, BMP signaling inhibits UCC growth in vitro. However, the in vivo effects of BMP signaling have not been elucidated in UCC. In conclusion, BMP signaling has a variety of functions, depending on the types of gynecologic cancer. Therefore, targeting BMP signaling should improve the treatment of patients with gynecologic cancer.
Collapse
Affiliation(s)
- Tomohiko Fukuda
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Risa Fukuda
- Division of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
4
|
Baghal-Sadriforoush S, Bagheri M, Abdi Rad I, Sotoodeh Nejadnematalahi F. PI3K Inhibition Sensitize the Cisplatin-resistant Human Ovarian Cancer Cell OVCAR3 by Induction of Oxidative Stress. Rep Biochem Mol Biol 2022; 10:675-685. [PMID: 35291604 PMCID: PMC8903357 DOI: 10.52547/rbmb.10.4.675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND This study evaluates the effect of simultaneous AKT inhibition and cisplatin therapy in changes of Reactive Oxygen Species (ROS) production, apoptosis induction, and cell survival in cisplatin-resistant OVCAR3 cell. METHODS OVCAR3 cancer cells were treated with cisplatin, Ly 294002 (LY), and cisplatin+Ly to investigate the cytotoxicity effect of the mentioned groups via MTT assay. Then, DCFH-DA (2', 7'-dichlorodihydro fluorescein diacetate) assay kit is used to assess the potential of treated groups in intracellular ROS generation. Protein expression levels of caspase-3, cleaved caspase 3, PI3K, Akt, p-Akt, XIAP, and Survivin are estimated through immunoblotting assay in all three experimental groups. RESULTS The results showed that all three treated groups, including cisplatin and Ly alone and co-administration of cisplatin+Ly, could reduce the cell vitality of OVCAR3 cancer cells, induced intracellular production of ROS and increased the expression level of activated caspase 3 and Akt protein, whereas down-regulated the phosphorylation of Akt protein. However, the effect of combination therapy was more tangible compared to single therapy and control groups. In contrast, the expression amount of XIAP, Survivin, and PI3K did not show detectable changes in comparison with the control group. CONCLUSION The results showed that the AKT inhibition by Ly could sensitize the OVCAR3 cancer cells to the cisplatin and lower the effective dose of cisplatin through hyperactivation of oxidative stress.
Collapse
Affiliation(s)
| | - Morteza Bagheri
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Corresponding author: Morteza Bagheri; Tel: +98 4433457277; E-mail:
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
5
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Urinary Cell-Free DNA in Bladder Cancer Detection. Diagnostics (Basel) 2021; 11:diagnostics11020306. [PMID: 33672869 PMCID: PMC7918217 DOI: 10.3390/diagnostics11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/09/2022] Open
Abstract
Urinary bladder cancer is a common urological cancer. Although flexible cystoscopy is widely employed in bladder cancer detection, it is expensive, invasive, and uncomfortable to the patients. Recently, urinary cell-free DNA (ucfDNA) isolated from urine supernatant has been shown to have great potential in bladder cancer detection and surveillance. Molecular features, such as integrity and concentration of ucfDNA, have been shown to be useful for differentiating bladder cancer patients from healthy controls. Besides, bladder cancer also exhibits unique genetic features that can be identified from sequencing and expression of ucfDNA. Apart from bladder cancer detection, ucfDNA is also useful for molecular classification. For example, ucfDNA exhibits significant differences, both molecularly and genetically, in non-muscle-invasive and muscle-invasive bladder cancers. There is no doubt that ucfDNA is a very promising tool for future applications in the field of bladder cancer.
Collapse
|
7
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
8
|
Madden EC, Gorman AM, Logue SE, Samali A. Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer 2020; 6:489-505. [PMID: 32460003 DOI: 10.1016/j.trecan.2020.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Chemoresistance is a major factor driving tumour relapse and the high rates of cancer-related deaths. Understanding how cancer cells overcome chemotherapy-induced cell death is critical in promoting patient survival. One emerging mechanism of chemoresistance is the tumour cell secretome (TCS), an array of protumorigenic factors released by tumour cells. Chemotherapy exposure can also alter the composition of the TCS, known as therapy-induced TCS, and can promote tumour relapse and the formation of an immunosuppressive tumour microenvironment (TME). Here, we outline how the TCS can protect cancer cells from chemotherapy-induced cell death. We also highlight recent evidence describing how therapy-induced TCS can impact cancer stem cell (CSC) expansion and tumour-associated immune cells to enable tumour regrowth and antitumour immunity.
Collapse
Affiliation(s)
- Emma C Madden
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland.
| |
Collapse
|
9
|
Xu Y, Kim YH, Jeong P, Piao XM, Byun YJ, Seo SP, Kang HW, Kim WT, Lee JY, Ryu DH, Choi JW, Kim IY, Moon SK, Choi YH, Yun SJ, Kim WJ. Urinary Cell-Free DNA IQGAP3/BMP4 Ratio as a Prognostic Marker for Non-Muscle-Invasive Bladder Cancer. Clin Genitourin Cancer 2019; 17:e704-e711. [PMID: 31088707 DOI: 10.1016/j.clgc.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Disease monitoring in non-muscle-invasive bladder cancer (NMIBC) patients is crucial for early identification of disease recurrence and progression. High IQGAP3/BMP4 and IQGAP3/FAM107A ratios in urinary cell-free DNA (ucfDNA) are a diagnostic biomarker for bladder cancer. We aimed to investigate whether the levels of these biomarkers in ucfDNA can be used to monitor disease recurrence or progression in patients with NMIBC. PATIENTS AND METHODS A total of 103 patients with NMIBC (pTa-pT1) were enrolled. The IQGAP3/BMP4 and IQGAP3/FAM107A ratios in ucfDNA were measured by real-time PCR, and the results were compared with clinical outcome by Kaplan-Meier curves and Cox regression analyses. RESULTS Overall, 55 patients (53.4%) experienced recurrence and 29 (28.2%) experienced disease progression during a median follow-up of 42.7 months (range, 6.1-172.2 months). Kaplan-Meier analysis revealed that NMIBC patients with a high IQGAP3/BMP4 ratio had worse recurrence-free survival and progression-free survival (PFS) (P = .001 and < .001, respectively), and those with a high IQGAP3/FAM107A ratio had worse PFS (P = .006). Multivariate Cox regression analysis revealed that the IQGAP3/BMP4 ratio was independently associated with recurrence-free survival (hazard ratio, 2.462; P = .003) and PFS (hazard ratio = 3.871; P = .004), whereas the IQGAP3/FAM107A ratio was not an independent factor for PFS (P = .079). CONCLUSION The IQGAP3/BMP4 ratio in ucfDNA might be a valuable novel biomarker for predicting disease recurrence and progression in patients with NMIBC.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea; Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ye-Hwan Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Pildu Jeong
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung Pil Seo
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jong-Young Lee
- Department of Business Data Convergence, Chungbuk National University, Cheongju, Korea; Theragen Etex Bio Institute, Suwon, Korea
| | - Dong Hee Ryu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Jae-Woon Choi
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Isaac Y Kim
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sung-Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Ansung, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
10
|
Jin Y, Zheng W, Li L, Huang G, Liu Y, Jiang H, Zhang Y, Tang C. Loss of BMP-10 is correlated with poor survival in ovarian cancer. Pathol Res Pract 2018; 215:121-126. [PMID: 30401582 DOI: 10.1016/j.prp.2018.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/07/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The expression of bone morphogenetic protein-10 (BMP-10) is downregulated in some cancer types, but its function and mechanism in ovarian cancer remains unclear. MATERIALS AND METHODS BMP-10 expression was detected in ovarian cancer tissues and cell lines by using immunochemistry and western blotting. Prognostic value of BMP-10 was evaluated by Kaplan-Meier curve and Cox regression model. Knockdown or overexpression of BMP-10 was conducted by using specific siRNA or pcDNA-BMP-10 in ovarian cancer cell lines. The biological features induced by BMP-10 were observed by MTT assay, wound-healing and transwell assays. RESULTS BMP-10 expression in ovarian cancer tissues was significantly lower than that in ovarian tissues. Low BMP-10 expression in ovarian cancer tissues was related to advance FIGO stage, higher histologic grade, lymph node metastasis, and peritoneal fluid. Kaplan-Meier analysis revealed that low BMP-10 expression was significantly associated with poor prognosis of patients with ovarian cancer. BMP-10 overexpression or knockdown significantly inhibited or promoted proliferation, migration, and invasion of ovarian cancer cells, respectively. Moreover, administration of neutralizing antibody or human recombinant BMP-10 would reverse these effects on ovarian cancer cells. CONCLUSION Low BMP-10 expression was associated with poor prognosis and progression of ovarian cancer.
Collapse
Affiliation(s)
- Yunfeng Jin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Li Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Guoqin Huang
- Department of Obstetrics and Gynecology, Affiliated Maternal and Child Health Care Hospital of Nantong University, Nantong, Jiangsu 226018, China
| | - Ya Liu
- Department of Obstetrics and Gynecology, Affiliated Haian People's Hospital of Nantong University, Nantong, Jiangsu 226600, China
| | - Haiyan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuexiang Zhang
- Department of Obstetrics and Gynecology, Affiliated Maternal and Child Health Care Hospital of Nantong University, Nantong, Jiangsu 226018, China.
| | - Chunhui Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
11
|
Ma J, Zeng S, Zhang Y, Deng G, Qu Y, Guo C, Yin L, Han Y, Cai C, Li Y, Wang G, Bonkovsky HL, Shen H. BMP4 promotes oxaliplatin resistance by an induction of epithelial-mesenchymal transition via MEK1/ERK/ELK1 signaling in hepatocellular carcinoma. Cancer Lett 2017; 411:117-129. [PMID: 28987388 DOI: 10.1016/j.canlet.2017.09.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bone morphogenetic protein-4 (BMP4) is a key regulator of epithelial-mesenchymal transition (EMT), which is crucial for cancer cells to acquire chemoresistance. The effects of BMP4 on OXA sensitivity in HCC need to be elucidated. METHODS Functional analysis of BMP4 on EMT-regulated OXA sensitivity was performed in human HCC specimens, in the HCC cell lines HepG2 and HCCLM3, and in a subcutaneous tumor model receiving OXA treatment. The downstream signaling targets of BMP4 in HCC were profiled and confirmed. RESULTS BMP4 expression was significantly increased in HCC tissue, and was correlated with tumor de-differentiation and unfavorable prognosis. BMP4 promoted HCC EMT and was correlated with OXA resistance. Blocking of BMP4 reversed EMT and increased OXA chemosensitivity in vitro and in vivo. ELK1, a transcription factor involved in EMT, was an important mediator of BMP4-induced OXA resistance in HCC. Blocking of MEK/ERK/ELK1 attenuated BMP4-induced EMT and enhanced OXA sensitivity. CONCLUSIONS BMP4 induces EMT and OXA chemoresistance via MEK/ERK/ELK1 signaling pathway in HCC. BMP4 may be a valuable therapeutic target for HCC patients receiving OXA-based chemotherapy.
Collapse
Affiliation(s)
- Junli Ma
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Zhang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ganlu Deng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yanling Qu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ling Yin
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yiyi Li
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guqi Wang
- School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA; Whole Pharm Biotechnology Corp., Matthews, NC 28105, USA
| | - Herbert L Bonkovsky
- School of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA.
| | - Hong Shen
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion. Mol Cell Biol 2016; 36:1509-25. [PMID: 26976638 DOI: 10.1128/mcb.00600-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling.
Collapse
|
13
|
Hover LD, Young CD, Bhola NE, Wilson AJ, Khabele D, Hong CC, Moses HL, Owens P. Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth. Cancer Lett 2015; 368:79-87. [PMID: 26235139 DOI: 10.1016/j.canlet.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/06/2023]
Abstract
The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Christian D Young
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil E Bhola
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew J Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Dineo Khabele
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Charles C Hong
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Cardiovascular, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Coveney C, Boocock DJ, Rees RC, Deen S, Ball GR. Data Mining of Gene Arrays for Biomarkers of Survival in Ovarian Cancer. MICROARRAYS 2015; 4:324-38. [PMID: 27600227 PMCID: PMC4996375 DOI: 10.3390/microarrays4030324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/02/2022]
Abstract
The expected five-year survival rate from a stage III ovarian cancer diagnosis is a mere 22%; this applies to the 7000 new cases diagnosed yearly in the UK. Stratification of patients with this heterogeneous disease, based on active molecular pathways, would aid a targeted treatment improving the prognosis for many cases. While hundreds of genes have been associated with ovarian cancer, few have yet been verified by peer research for clinical significance. Here, a meta-analysis approach was applied to two carefully selected gene expression microarray datasets. Artificial neural networks, Cox univariate survival analyses and T-tests identified genes whose expression was consistently and significantly associated with patient survival. The rigor of this experimental design increases confidence in the genes found to be of interest. A list of 56 genes were distilled from a potential 37,000 to be significantly related to survival in both datasets with a FDR of 1.39859 × 10−11, the identities of which both verify genes already implicated with this disease and provide novel genes and pathways to pursue. Further investigation and validation of these may lead to clinical insights and have potential to predict a patient’s response to treatment or be used as a novel target for therapy.
Collapse
Affiliation(s)
- Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Robert C Rees
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Suha Deen
- Department of Histopathology, Queens Medical Centre, Derby Road, Nottingham, Nottinghamshire NG7 2NH, UK.
| | - Graham R Ball
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK.
| |
Collapse
|
15
|
Kuzaka B, Janiak M, Włodarski KH, Radziszewski P, Włodarski PK. Expression of bone morphogenetic protein-2 and -7 in urinary bladder cancer predicts time to tumor recurrence. Arch Med Sci 2015; 11:378-84. [PMID: 25995755 PMCID: PMC4424243 DOI: 10.5114/aoms.2014.46796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/14/2013] [Accepted: 08/19/2013] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Urinary bladder cancer patients who have undergone transurethral resection of bladder tumor (TURBT) are at risk of recurrence. This study aims to correlate the level of bone morphogenetic protein (BMP) expression with urothelial carcinoma invasiveness, TNM stage and time to recurrence after TURBT. MATERIAL AND METHODS In 33 specimens of healthy transitional epithelium and 42 of urothelial carcinoma, BMP2, BMP4 and BMP7 expression was determined by real-time polymerase chain reaction. Patients who underwent TURBT were followed up for 1 year. RESULTS BMP2 and BMP7 were downregulated in infiltrating urothelial carcinoma, the relative expression being 0.76 (p = 0.04) and 0.28 (p = 0.025) respectively, while BMP4 was downregulated in non-invasive tumors. High expression of BMP2 and BMP7 correlated with prolonged time to recurrence (log-rank: p = 0.01 and p = 0.03 respectively). CONCLUSIONS Low expression of BMP2 and BMP7 is associated with shorter time to recurrence. The BMP expression levels are not indicative of tumor stage.
Collapse
Affiliation(s)
- Bolesław Kuzaka
- Department of General, Oncologic and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Janiak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof H Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Radziszewski
- Department of General, Oncologic and Functional Urology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł K Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
BMP-4 genetic variants and protein expression are associated with platinum-based chemotherapy response and prognosis in NSCLC. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801640. [PMID: 24779016 PMCID: PMC3977566 DOI: 10.1155/2014/801640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/27/2023]
Abstract
To explore the role of genetic polymorphisms of bone morphogenic proteins 4 (BMP-4) in the response to platinum-based chemotherapy and the clinical outcome in patients with advanced nonsmall cell lung cancer (NSCLC), 938 patients with stage III (A+B) or IV NSCLC were enrolled in this study. We found that the variant genotypes of 6007C > T polymorphisms significantly associated with the chemotherapy response. The 6007CC genotype carriers had a higher chance to be responder to chemotherapy (adjusted odd ratio = 2.77; 95% CI: 1.83–4.18; adjusted < 0.001). The 6007C > T polymorphisms and BMP-4 expression also affect the prognosis of NSCLC. Patients with high BMP-4 expression had a significantly higher chance to be resistant to chemotherapy than those with low BMP-4 expression (OR = 2.81; 95% CI: 1.23–6.44; P = 0.01). The hazard ratio (HR) for 6007TT was 2.37 times higher than 6007CC (P = 0.003). In summary, the 6007C > T polymorphism of BMP-4 gene and BMP-4 tissue expression may be used as potential predictor for the chemotherapy response and prognosis of advanced NSCLC.
Collapse
|
17
|
Cui Y, Jing Y, Sun Z. Lack of association between MTHFD1 G401A polymorphism and ovarian cancer susceptibility. Tumour Biol 2013; 35:3385-9. [DOI: 10.1007/s13277-013-1446-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022] Open
|
18
|
Repression of bone morphogenetic protein 4 by let-7i attenuates mesenchymal migration of head and neck cancer cells. Biochem Biophys Res Commun 2013; 433:24-30. [DOI: 10.1016/j.bbrc.2013.02.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 12/21/2022]
|
19
|
Bone morphogenetic protein 4 expression in multiple normal and tumor tissues reveals its importance beyond development. Mod Pathol 2013; 26:10-21. [PMID: 22899288 DOI: 10.1038/modpathol.2012.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic proteins (BMPs) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily and are known to regulate cell proliferation, differentiation and motility, especially during development. BMP4 has an indispensable role in vertebrate development while limited information on BMP4 expression and function exists in adult tissues. Nevertheless, its contribution to cancer development and progression has gained increasing interest in recent years. Functional studies, especially in breast cancer, have implicated BMP4 both in inhibition of cell proliferation and in promotion of cell migration and invasion. To gain an insight into the function of BMP4 in normal and cancer tissues, BMP4 protein expression levels were analyzed by immunohistochemistry in 34 different normal organs/tissues, 34 different tumor types and finally in 486 breast cancer samples where possible associations between BMP4 and clinicopathological parameters were statistically evaluated. In over 20% of normal and malignant tissues, BMP4 was expressed at high level. Strong expression was observed particularly in some normal epithelial cells, such as bladder and stomach, and in squamous cell carcinomas. In breast cancer, strong BMP4 expression was detected in 25% of patients, and was associated with low proliferation index and increased frequency of tumor recurrence. Taken together, BMP4 is expressed in a subset of normal adult tissues and is likely to contribute to tissue homeostasis. However, in tumors, BMP4 expression levels vary considerably, implying diverse roles in different tumor types. This role is biphasic in breast cancer as BMP4 expression is linked to reduced proliferation and increased recurrence, thus corroborating our previous in-vitro functional data.
Collapse
|
20
|
Bone morphogenetic protein 4-a fascinating regulator of cancer cell behavior. Cancer Genet 2012; 205:267-77. [PMID: 22749032 DOI: 10.1016/j.cancergen.2012.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) are extracellular signaling molecules that belong to the transforming growth factor β (TGFβ) superfamily and are well-known for their indispensable roles in vertebrate development. In recent years, important new information has been generated on the contribution of BMP family members, such as BMP4, in cancer pathogenesis. First of all, BMP4 gene variants have been shown to predispose to colorectal cancer. In sporadic cancer, BMP4 expression levels are commonly altered in many tumor types and have been linked to patient prognosis in hepatocellular and ovarian cancer. In terms of BMP4 function in cancer cells, the majority of studies demonstrate that BMP4 suppresses cell growth both in vitro and in vivo, and at the same time is able to induce migration, invasion, and epithelial-mesenchymal transition. These latter phenotypes are typically associated with cancer metastasis and progression, and thus BMP4 seems to elicit effects that are both detrimental and beneficial for the cancer cells. The functional effects of BMP4 are not restricted to the control of cell proliferation and mobility, since it also contributes to the regulation of differentiation, apoptosis, and angiogenesis. The latter is especially intriguing since the formation of new blood vessels is a prerequisite for sustained tumor growth and cancer progression. Mainly due to its growth suppressive abilities, BMP4 has been suggested as a possible therapeutic target in cancer cells. However, the other functional characteristics of BMP4, especially the promotion of cell mobility, make such strategies less appealing. Improved knowledge of the downstream mediators of BMP4 effects in cancer cells may allow dissection of the different BMP4-induced phenotypes and thereby generation of specific targeted therapies.
Collapse
|