1
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
2
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
3
|
Zhang X, Jin L, Tian Z, Wang J, Yang Y, Liu J, Chen Y, Hu C, Chen T, Zhao Y, He Y. Nitric oxide inhibits autophagy and promotes apoptosis in hepatocellular carcinoma. Cancer Sci 2019; 110:1054-1063. [PMID: 30657629 PMCID: PMC6398894 DOI: 10.1111/cas.13945] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related mortality worldwide. The expression of nitric oxide synthase (NOS) and the inhibition of autophagy have been linked to cancer cell death. However, the involvement of serum nitric oxide (NO), the expression of NOS and autophagy have not been investigated in HCC. In the present study, we first established that the NO level was significantly higher in hepatitis B virus-related HCC than in the liver cirrhosis control (53.60 ± 19.74 vs 8.09 ± 4.17 μmol/L, t = 15.13, P < 0.0001). Using immunohistochemistry, we found that the source of NO was at least partially attributed to the expression of inducible NOS and endothelial NOS but not neuronal NOS in the liver tissue. Furthermore, in human liver cancer cells, NO-induced apoptosis and inhibited autophagy. Pharmacological inhibition of autophagy also induced apoptosis, whereas the induction of autophagy could ameliorate NO-induced apoptosis. We also found that NO regulates the switch between apoptosis and autophagy by disrupting the Beclin 1/Vps34 association and by increasing the Bcl-2/Beclin 1 interaction. Overall, the present findings suggest that increased NOS/NO promotes apoptosis through the inhibition of autophagy in liver cancer cells, which may provide a novel strategy for the treatment of HCC.
Collapse
Affiliation(s)
- XiaoGang Zhang
- Department of Hepatobiliary SurgeryFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Li Jin
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Zhen Tian
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Jing Wang
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Yuan Yang
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - JinFeng Liu
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - Yi Chen
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - ChunHua Hu
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - TianYan Chen
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - YingRen Zhao
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| | - YingLi He
- Institution of HepatologyFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
- Department of Infectious DiseasesFirst Affiliated HospitalSchool of MedicineXi'an Jiaotong UniversityXi'an CityChina
| |
Collapse
|
4
|
Development of a novel score for early detection of hepatocellular carcinoma among high-risk hepatitis C virus patients. Tumour Biol 2014; 35:6501-9. [PMID: 24687551 DOI: 10.1007/s13277-014-1858-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. VEGF was assayed for HCC group (123), liver cirrhosis group (210), and control group (50) by enzyme-linked immunosorbent assay (ELISA). Data from all groups were retrospectively analyzed including α-fetoprotein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under receiving operating curve (ROC) were used to develop the score. A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score) = 1.26 (numerical constant + 0.05 × AFP (U l(-1)) + 0.038 × VEGF (ng ml(-1)) + 0.004 × INR - 1.02 × albumin (g l(-1)) - 0.002 × platelet count × 10(9) l- (1) was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91 % and specificity of 82 % at cutoff 4.4 (i.e., less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.
Collapse
|
5
|
El-mezayen HA, Metwally FM, Darwish H. A novel discriminant score based on tumor-associated trypsin inhibitor for accurate diagnosis of metastasis in patients with breast cancer. Tumour Biol 2013; 35:2759-67. [PMID: 24222329 DOI: 10.1007/s13277-013-1366-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022] Open
Abstract
Invasion and metastasis of solid tumors require proteolytic enzymes for degradation of the basal membrane and extracellular matrix. Currently, there are no reliable methodologies to predict the risk for metastatic disease. In this context, our aim has been focused on the development of a noninvasive score based on tumor-associated trypsin inhibitor (TATI) for the assessment of metastasis in patients with breast cancer. TATI, trypsin, and soluble epidermal growth factor receptor (sEGFR) were assayed by enzyme-linked immunosorbent assay. CA 15.3 serum level was assayed by microparticle enzyme immunoassay in 265 patients with breast cancer. Statistical analyses were performed by logistic regression and receiver operating characteristic analysis curves. Using multivariate discriminant analysis, a score is selected based on absolute values of the four biochemical markers: TATI-metastatic breast cancer score (TATI-MBCS) = [0.03 × CA 15.3 (U/L) + 0.039 × TATI (ng/ml) + 0.04 × trypsin (ng/ml) + 0.023 × sEGFR (ng/ml) - 6.49 (numerical constant)]. This function correctly classified 84% of metastatic breast cancer at cutoff value = 0.62 (i.e., greater than 0.62 indicates patients with metastatic breast cancer and less than 0.62 indicates patients with nonmetastatic breast cancer). In conclusion, TATI-MBCS is a novel, noninvasive, and simple score which can be applied to discriminate patients with metastatic breast cancer.
Collapse
|
6
|
El-Mezayen HA, Toson ESA, Darwish H, Metwally FM. Development of a novel metastatic breast cancer score based on hyaluronic acid metabolism. Med Oncol 2012; 30:404. [PMID: 23275142 DOI: 10.1007/s12032-012-0404-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 01/07/2023]
Abstract
Tumor metastasis involves the dissemination of malignant cells into the basement membrane, and the vascular system contributes to the circulating pool of these markers. In this context, our aim has been focused on the development of a non-invasive score based on degradation of the backbone of glycosaminoglycans of the extracellular matrix; namely hyaluronic acid (HA), for the assessment of metastasis in patients with breast cancer. HA level was determined by enzyme-linked immunosorbent assay; CA 15.3 was determined by microparticle enzyme immunoassay; hyaluronidase, N-acetyl-β-D-glucosaminidase, β-glucuronidase, glucuronic acid, and glucosamine were assayed by standard colorimetric techniques in 217 patients with breast cancer. Statistical analyses were performed by logistic regression and receiver-operating characteristic analysis curves. The multivariate discriminant analysis selects a score based on absolute values of the six biochemical markers: metastatic breast cancer score (MBCS) = [1.04 (Numerical constant) + 0.003 × CA 15.3 (U/l) + 0.001 × HA (ng/ml) + 0.004 × hyaluronidase (mg N-acetyl-β-D-glucosamine/ml/18 h) + 0.001 × N-acetyl-β-D-glucosaminidase (μmol/ml/min) + 0.026 × glucuronic acid (ng/ml) + 0.003 × glucosamine (μg/dl)]. This function correctly classified 87 % of metastatic breast cancer at cut-off value = 0.85 (i.e., great than 0.85 indicates patients with metastatic breast cancer and less than 0.85 indicates patients with non-metastatic breast cancer). MBCS is a novel, non-invasive, and simple score which can be applied to discriminate patients with metastatic breast cancer.
Collapse
|