1
|
Yotova I, Proestling K, Haslinger I, Witzmann-Stern M, Widmar B, Kuessel L, Husslein H, Wenzl R, Hudson QJ. DIRAS3 regulates autophagy in an endometriosis epithelial cell line. Reprod Biomed Online 2023; 47:103251. [PMID: 37598541 DOI: 10.1016/j.rbmo.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023]
Abstract
RESEARCH QUESTION What is the role of DIRAS3 in endometriosis pathogenesis? DESIGN Prospective patient cohort study combined with experiments in the 12Z human endometriosis epithelial cell line model to determine the role of DIRAS3 in endometriosis. Endometrium and endometriosis lesion samples were collected from premenopausal women from 24 control and 40 endometriosis patients by laparoscopic surgery. The role of DIRAS3 in endometriosis was assessed by siRNA knockdown in 12Z cells followed by proliferation, apoptosis, invasion and autophagy assays. Autophagy was induced by serum starvation and the levels of autophagy determined by assessing changes in the expression levels and localization of autophagy marker proteins, such as LC3. RESULTS DIRAS3 mRNA showed a large increase in expression in ectopic endometriosis lesions compared with endometrium from control patients, with expression largely localized to the epithelium. DIRAS3 knockdown in 12Z endometriosis epithelial cells caused a significant reduction in the number of proliferating cells (1.6-fold, adjusted P = 0.0007) and increased apoptosis (AnnexinV/7AAD double-positive cells +48%, P = 0.01), indicating an effect on cell proliferation. Induction of autophagy by serum starvation caused significant upregulation in DIRAS3 expression after 24 h (mRNA +2.4-fold [adjusted P = 0.017], protein +8.1-fold (adjusted P = 0.029), reduced LC3I/LC3II ratio (-2.2-fold, adjusted P = 0.044) and an increase in the number of double positive LC3/DIRAS3 puncta (+2.3-fold, P = 0.02). Knockdown of DIRAS3 in serum-starved cells led to a reduction in autophagy, indicated by an overall decrease in LC3 expression and significant increase in LC3I/LC3II ratio. CONCLUSIONS DIRAS3 is highly upregulated in endometriosis lesions. Studies in an endometriosis epithelial cell line indicate that DIRAS3 facilitates cell survival in this context by inducing autophagy.
Collapse
Affiliation(s)
- Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria..
| | - Katharina Proestling
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Isabella Haslinger
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Matthias Witzmann-Stern
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Barbara Widmar
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
2
|
Bildik G, Liang X, Sutton MN, Bast RC, Lu Z. DIRAS3: An Imprinted Tumor Suppressor Gene that Regulates RAS and PI3K-driven Cancer Growth, Motility, Autophagy, and Tumor Dormancy. Mol Cancer Ther 2022; 21:25-37. [PMID: 34667114 DOI: 10.1158/1535-7163.mct-21-0331] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023]
Abstract
DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kDa GTPase with 60% amino acid homology to RAS, but with a distinctive 34 amino acid N-terminal extension required to block RAS function. DIRAS3 is maternally imprinted and expressed only from the paternal allele in normal cells. Loss of expression can occur in a single "hit" through multiple mechanisms. Downregulation of DIRAS3 occurs in cancers of the ovary, breast, lung, prostate, colon, brain, and thyroid. Reexpression of DIRAS3 inhibits signaling through PI3 kinase/AKT, JAK/STAT, and RAS/MAPK, blocking malignant transformation, inhibiting cancer cell growth and motility, and preventing angiogenesis. DIRAS3 is a unique endogenous RAS inhibitor that binds directly to RAS, disrupting RAS dimers and clusters, and preventing RAS-induced transformation. DIRAS3 is essential for autophagy and triggers this process through multiple mechanisms. Reexpression of DIRAS3 induces dormancy in a nu/nu mouse xenograft model of ovarian cancer, inhibiting cancer cell growth and angiogenesis. DIRAS3-mediated induction of autophagy facilitates the survival of dormant cancer cells in a nutrient-poor environment. DIRAS3 expression in dormant, drug-resistant autophagic cancer cells can serve as a biomarker and as a target for novel therapy to eliminate the residual disease that remains after conventional therapy.
Collapse
Affiliation(s)
- Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaowen Liang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margie N Sutton
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Zhang XW. ARHI overexpression inhibits proliferation and invasion and promotes apoptosis of gastric carcinoma MKN28 cells. Shijie Huaren Xiaohua Zazhi 2020; 28:50-57. [DOI: 10.11569/wcjd.v28.i2.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ARHI has been proved to be associated with tumorigenesis and progression. However, it is not clear whether ARHI gene overexpression can inhibit the proliferation of gastric cancer (GC). In this study, we investigated the effect of ARHI gene overexpression on cell proliferation, invasion, and apoptosis in GC cell line MKN28.
AIM To investigate the effect of ARHI overexpression on the proliferation, invasion, and apoptosis of gastric carcinoma MKN28 cells and to explore the possible mechanisms involved.
METHODS The pcDNA 3.1-ARHI plasmid was constructed and used to transfect MKN28 cells. Meanwhile, a blank control group and a negative control mock group were set. Cell proliferation was detected by MTT assay. Cell scratch wound assay was used to detect the ability of cell migration. Transwell method was used to detect cell invasion ability. Flow cytometry was used to detect cell apoptosis. Western blot was used for detection of related protein expression.
RESULTS Compared with blank control MKN28 cells (1.257% ± 0.006%), the proliferation rates at 48 h after transfection in the mock group was comparable (1.257% ± 0.006% vs 1.163% ± 0.003%, P > 0.05), while that of the ARHI overexpression group was significantly decreased (1.257% ± 0.006% vs 0.826% ± 0.005%, P < 0.05); the migration ability in the mock group was not significantly changed (19.918% ± 0.233% vs 18.295% ± 0.534%, P > 0.05), while that of the ARHI overexpression group was significantly decreased (19.918% ± 0.233% vs 4.299% ± 1.572 %, P < 0.05); the invasion ability in the mock group was not significantly changed (234 ± 3.61 vs 235 ± 4.51, P > 0.05), while that of the ARHI overexpression group was significantly decreased (234 ± 3.61 vs 93.3 ± 2.08, P < 0.05); the total apoptosis rate in the mock group was not significantly changed (3.513% ± 0.015% vs 3.597% ± 0.25%, P > 0.05), while that of the ARHI overexpression group was significantly increased (3.513% ± 0.015% vs 14.133% ± 0.032%, P < 0.05). Western blot results showed that, compared with blank control MKN28 cells, the relative expression of ARHI protein (1.037 ± 0.003), vascular endothelial growth factor (VEGF) (1.026 ± 0.008), B-cell lymphoma-2 (Bcl-2) (1.014 ± 0.010), protein kinase B (AKT) (1.001 ± 0.005), and p-AKT protein (0.977 ± 0.003) was not significantly changed (P > 0.05), while the expression of ARHI protein (2.088 ± 0.007) was significantly up-regulated (P < 0.05), that of VEGF protein (0.456 ± 0.004), Bcl-2 protein (0.468 ± 0.005), and p-AKT protein (0.502 ± 0.001) was significantly down-regulated (P < 0.05), and that of AKT protein was not significantly changed (P > 0.05).
CONCLUSION Excessive expression of ARHI gene can inhibit the proliferation of MKN28 cells and promote their apoptosis, which may be related to the reduction of VEGF and p-AKT protein expression.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
4
|
Li X, Liu S, Fang X, He C, Hu X. The mechanisms of DIRAS family members in role of tumor suppressor. J Cell Physiol 2018; 234:5564-5577. [PMID: 30317588 DOI: 10.1002/jcp.27376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022]
Abstract
DIRAS family is a group of GTPases belonging to the RAS superfamily and shares homology with the pro-oncogenic Ras GTPases. Currently, accumulating evidence show that DIRAS family members could be identified as putative tumor suppressors in various cancers. The either lost or reduced expression of DIRAS proteins play an important role in cancer development, including cell growth, migration, apoptosis, autophagic cell death, and tumor dormancy. This review focuses on the latest research regarding the roles and mechanisms of the DIRAS family members in regulating Ras function, cancer development, assessing potential challenges, and providing insights into the possibility of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Xueli Li
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuiping Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Stojic L, Niemczyk M, Orjalo A, Ito Y, Ruijter AEM, Uribe-Lewis S, Joseph N, Weston S, Menon S, Odom DT, Rinn J, Gergely F, Murrell A. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nat Commun 2016; 7:10406. [PMID: 26832224 PMCID: PMC4740813 DOI: 10.1038/ncomms10406] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Malwina Niemczyk
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Arturo Orjalo
- Biosearch Technologies Inc., 2199S. McDowell Boulevard, Petaluma, California 94954, USA
| | - Yoko Ito
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anna Elisabeth Maria Ruijter
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen Weston
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Suraj Menon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T. Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - John Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Adele Murrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
6
|
ARHI overexpression induces epithelial ovarian cancer cell apoptosis and excessive autophagy. Int J Gynecol Cancer 2015; 24:437-43. [PMID: 24476894 DOI: 10.1097/igc.0000000000000065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE ARHI is a maternally imprinted tumor suppressor gene that is responsible for initiating programmed cell death and inhibiting cancer cell growth. However, the influence of ARHI on epithelial ovarian cancer cell death and the underlying mechanisms behind how ARHI regulates cancer cells still require further studies. METHODS Epithelial ovarian cancer cells TOV112D and ES-2 were used in this in vitro study. Cell proliferation, apoptosis, and autophagy activities were compared in TOV112D and ES-2 cells transfected with ARHI vectors or control vectors. Bcl-2 siRNA was transfected into TOV112D cells to investigate the roles of Bcl-2 played in regulating apoptosis and autophagy. RESULTS ARHI expression was reduced in TOV112D and ES-2 cells compared with normal epithelial ovarian cells (NOE095 and HOSEpiC). Overexpressed ARHI inhibited cancer cell proliferation, whereas induced forced cell apoptosis and excessive formation of autophagosomes inhibited promoted cell death. Furthermore, we found that Bcl-2 expression moderately declined in response to ARHI overexpressing in ES-2 and TOV112D cells; meanwhile, more apoptotic cells and higher LC3 level presented after silence of Bcl-2 in TOV112D cells. Reduced Bcl-2-Beclin 1 complex were observed in ARHI overexpressing cells. Moreover, modulation of ARHI to Bcl-2 expression could be ascribed partially to the activation of PI3k/AKT pathway. The addition of LY294002 enabled to suppress Bcl-2 expression and cell proliferation. CONCLUSIONS The silence of ARHI expression in vitro seems to accelerate the malignant transformation of healthy ovarian cells by restraining apoptosis and autophagy. The overexpressed ARHI in TOV112D cancer cells suppresses the activation of PI3K/AKT and reduces the expression of Bcl-2, leading to enhanced cell apoptosis and autophagic cancer cell death.
Collapse
|
7
|
Kim J, Kim K, Kim H, Yoon G, Lee K. Characterization of age signatures of DNA methylation in normal and cancer tissues from multiple studies. BMC Genomics 2014; 15:997. [PMID: 25406591 PMCID: PMC4289351 DOI: 10.1186/1471-2164-15-997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/18/2014] [Indexed: 01/14/2023] Open
Abstract
Background DNA methylation (DNAm) levels can be used to predict the chronological age of tissues; however, the characteristics of DNAm age signatures in normal and cancer tissues are not well studied using multiple studies. Results We studied approximately 4000 normal and cancer samples with multiple tissue types from diverse studies, and using linear and nonlinear regression models identified reliable tissue type-invariant DNAm age signatures. A normal signature comprising 127 CpG loci was highly enriched on the X chromosome. Age-hypermethylated loci were enriched for guanine–and-cytosine-rich regions in CpG islands (CGIs), whereas age-hypomethylated loci were enriched for adenine–and-thymine-rich regions in non-CGIs. However, the cancer signature comprised only 26 age-hypomethylated loci, none on the X chromosome, and with no overlap with the normal signature. Genes related to the normal signature were enriched for aging-related gene ontology terms including metabolic processes, immune system processes, and cell proliferation. The related gene products of the normal signature had more than the average number of interacting partners in a protein interaction network and had a tendency not to interact directly with each other. The genomic sequences of the normal signature were well conserved and the age-associated DNAm levels could satisfactorily predict the chronological ages of tissues regardless of tissue type. Interestingly, the age-associated DNAm increases or decreases of the normal signature were aberrantly accelerated in cancer samples. Conclusion These tissue type-invariant DNAm age signatures in normal and cancer can be used to address important questions in developmental biology and cancer research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-997) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - KiYoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 443-380, South Korea.
| |
Collapse
|
8
|
Lu Z, Yang H, Sutton MN, Yang M, Clarke CH, Liao WSL, Bast RC. ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ 2014; 21:1275-89. [PMID: 24769729 DOI: 10.1038/cdd.2014.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/31/2023] Open
Abstract
The process of autophagy has been described in detail at the molecular level in normal cells, but less is known of its regulation in cancer cells. Aplasia Ras homolog member I (ARHI; DIRAS3) is an imprinted tumor suppressor gene that is downregulated in multiple malignancies including ovarian cancer. Re-expression of ARHI slows proliferation, inhibits motility, induces autophagy and produces tumor dormancy. Our previous studies have implicated autophagy in the survival of dormant ovarian cancer cells and have shown that ARHI is required for autophagy induced by starvation or rapamycin treatment. Re-expression of ARHI in ovarian cancer cells blocks signaling through the PI3K and Ras/MAP pathways, which, in turn, downregulates mTOR and initiates autophagy. Here we show that ARHI is required for autophagy-meditated cancer cell arrest and ARHI inhibits signaling through PI3K/AKT and Ras/MAP by enhancing internalization and degradation of the epidermal growth factor receptor. ARHI-mediated downregulation of PI3K/AKT and Ras/ERK signaling also decreases phosphorylation of FOXo3a, which sequesters this transcription factor in the nucleus. Nuclear retention of FOXo3a induces ATG4 and MAP-LC3-I, required for maturation of autophagosomes, and also increases the expression of Rab7, required for fusion of autophagosomes with lysosomes. Following the knockdown of FOXo3a or Rab7, autophagolysosome formation was observed but was markedly inhibited, resulting in numerous enlarged autophagosomes. ARHI expression correlates with LC3 expression and FOXo3a nuclear localization in surgical specimens of ovarian cancer. Thus, ARHI contributes to the induction of autophagy through multiple mechanisms in ovarian cancer cells.
Collapse
Affiliation(s)
- Z Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - H Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - M N Sutton
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - M Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - C H Clarke
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - W S-L Liao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| | - R C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-1439, USA
| |
Collapse
|
9
|
ZUO XIAOXIAO, QIN YAN, ZHANG XIAOJIN, NING QIAN, SHAO SHAN, LUO MINNA, YUAN NA, HUANG SHANGKE, ZHAO XINHAN. Breast cancer cells are arrested at different phases of the cell cycle following the re-expression of ARHI. Oncol Rep 2014; 31:2358-64. [DOI: 10.3892/or.2014.3107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/12/2014] [Indexed: 11/06/2022] Open
|
10
|
Over-expression of ARHI decreases tumor growth, migration, and invasion in human glioma. Med Oncol 2014; 31:846. [DOI: 10.1007/s12032-014-0846-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 01/14/2023]
|
11
|
Niemczyk M, Ito Y, Huddleston J, Git A, Abu-Amero S, Caldas C, Moore G, Stojic L, Murrell A. Imprinted chromatin around DIRAS3 regulates alternative splicing of GNG12-AS1, a long noncoding RNA. Am J Hum Genet 2013; 93:224-35. [PMID: 23871723 PMCID: PMC3738830 DOI: 10.1016/j.ajhg.2013.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 06/07/2013] [Indexed: 12/21/2022] Open
Abstract
Imprinted gene clusters are regulated by long noncoding RNAs (lncRNAs), CCCTC binding factor (CTCF)-mediated boundaries, and DNA methylation. DIRAS3 (also known as ARH1 or NOEY1) is an imprinted gene encoding a protein belonging to the RAS superfamily of GTPases and is located within an intron of a lncRNA called GNG12-AS1. In this study, we investigated whether GNG12-AS1 is imprinted and coregulated with DIRAS3. We report that GNG12-AS1 is coexpressed with DIRAS3 in several tissues and coordinately downregulated with DIRAS3 in breast cancers. GNG12-AS1 has several splice variants, all of which initiate from a single transcription start site. In placenta tissue and normal cell lines, GNG12-AS1 is biallelically expressed but some isoforms are allele-specifically spliced. Cohesin plays a role in allele-specific splicing of GNG12-AS1. In breast cancer cell lines with loss of DIRAS3 imprinting, DIRAS3 and GNG12-AS1 are silenced in cis and the remaining GNG12-AS1 transcripts are predominantly monoallelic. The GNG12-AS1 locus, which includes DIRAS3, provides an example of imprinted cotranscriptional splicing and a potential model system for studying the long-range effects of CTCF-cohesin binding on splicing and transcriptional interference.
Collapse
Affiliation(s)
| | - Yoko Ito
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Anna Git
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | - Sayeda Abu-Amero
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Carlos Caldas
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | - Gudrun E. Moore
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Adele Murrell
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
12
|
Li Y, Liu M, Zhang Y, Han C, You J, Yang J, Cao C, Jiao S. Effects of ARHI on breast cancer cell biological behavior regulated by microRNA-221. Tumour Biol 2013; 34:3545-54. [PMID: 23801152 DOI: 10.1007/s13277-013-0933-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/12/2013] [Indexed: 12/26/2022] Open
Abstract
The aplysia ras homolog member I (ARHI) is a tumor suppressor gene and is downregulated in various cancers. The downregulation of ARHI was regulated by miR-221 in prostate cancer cell lines. However, it has not been reported whether ARHI is regulated by miR-221 in breast cancer. Here, we reported that the ARHI protein level was downregulated in breast cancer tissues and breast cancer cell lines. The overexpression of ARHI could inhibit cell proliferation and invasion and induce cell apoptosis. To address whether ARHI is regulated by miR-221 in breast cancer cell lines, the results in this study showed that a significant inverse correlation existed between ARHI and miR-221. MiR-221 displayed an upregulation in breast cancer tissues and breast cancer cell lines. The inhibition of miR-221 induced a significant upregulation of ARHI in MCF-7 cells. To prove a direct interaction between miR-221 and ARHI mRNA, ARHI 3'UTR, which includes the potential target site for miR-221, was cloned downstream of the luciferase reporter gene of the pMIR-REPORT vector to generate the pMIR-ARHI-3'UTR vector. The results confirmed a direct interaction of miR-221 with a target site on the 3'UTR of ARHI. In conclusion, ARHI is a tumor suppressor gene that is downregulated in breast cancer. The overexpression of ARHI could inhibit breast cancer cell proliferation and invasion and induce cell apoptosis. This study demonstrated for the first time that the downregulation of ARHI in breast cancer cells could be regulated by miR-221.
Collapse
Affiliation(s)
- Ying Li
- Department of Oncology, Chinese PLA General Hospital, No. 28, FuXing Road, Beijing, 100853, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Effect of ARHI on lung cancer cell proliferation, apoptosis and invasion in vitro. Mol Biol Rep 2012; 40:2671-8. [DOI: 10.1007/s11033-012-2353-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 12/09/2012] [Indexed: 02/07/2023]
|