1
|
Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins. J Neurooncol 2014; 122:1-10. [PMID: 25503303 DOI: 10.1007/s11060-014-1683-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/04/2014] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GB) is a highly infiltrative tumor recurring within a few centimeters of the resection cavity in 85 % of cases, even in cases of complete tumor resection and adjuvant chemo/radiotherapy. We recently isolated GB-associated stromal cells (GASCs) from the GB peritumoral zone, with phenotypic and functional properties similar to those of the cancer-associated fibroblasts present in the stroma of carcinomas. In particular, GASCs promote blood vessel development and have tumor-promoting effects on glioma cells in vitro and in vivo. In this study, we characterized these cells further, by analyzing the transcriptome and methylome of 14 GASC and five control stromal cell preparations derived from non-GB peripheral brain tissues. We identified two subtypes of GASCs in surgical margins in GB patients: GASC-A and GASC-B. GASC-B promoted the development of tumors and endothelium, whereas GASC-A did not. A difference in DNA methylation may underlie these two subtypes. We identified various proteins as being produced in the procarcinogenic GASC-B. Some of these proteins may serve as prognostic factors for GB and/or targets for anti-glioma treatment. In conclusion, in this era of personalized therapy, the status of GASCs in GB-free surgical margins should be taken into account, to improve treatment and the prevention of recurrence.
Collapse
|
2
|
Ilie M, Long E, Hofman V, Selva E, Bonnetaud C, Boyer J, Vénissac N, Sanfiorenzo C, Ferrua B, Marquette CH, Mouroux J, Hofman P. Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br J Cancer 2014; 110:1236-43. [PMID: 24473396 PMCID: PMC3950863 DOI: 10.1038/bjc.2014.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Previous studies indicate that endothelial injury, as demonstrated by the presence of circulating endothelial cells (CECs), may predict clinical outcome in cancer patients. In addition, soluble CD146 (sCD146) may reflect activation of angiogenesis. However, no study has investigated their combined clinical value in patients undergoing resection for non-small cell lung cancer (NSCLC). Methods: Data were collected from preoperative blood samples from 74 patients who underwent resection for NSCLC. Circulating endothelial cells were defined, using the CellSearch Assay, as CD146+CD105+CD45−DAPI+. In parallel, sCD146 was quantified using an ELISA immunoassay. These experiments were also performed on a group of 20 patients with small-cell lung cancer, 60 healthy individuals and 23 patients with chronic obstructive pulmonary disease. Results: The CEC count and the plasma level of sCD146 were significantly higher in NSCLC patients than in the sub-groups of controls (P<0.001). Moreover, an increased CEC count was associated with higher levels of sCD146 (P=0.010). Both high CEC count and high sCD146 plasma level at baseline significantly correlated with shorter progression-free survival (P<0.001, respectively) and overall survival (P=0.005; P=0.009) of NSCLC patients. Conclusions: The present study provides supportive evidence to show that both a high CEC count and a high sCD146 level at baseline correlate with poor prognosis and may be useful for the prediction of clinical outcome in patients undergoing surgery for NSCLC.
Collapse
Affiliation(s)
- M Ilie
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - E Long
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - V Hofman
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France [3] Tumor Biobank, Pasteur Hospital, Nice, France
| | - E Selva
- Tumor Biobank, Pasteur Hospital, Nice, France
| | - C Bonnetaud
- Tumor Biobank, Pasteur Hospital, Nice, France
| | - J Boyer
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - N Vénissac
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Thoracic Surgery, Pasteur Hospital, Nice, France
| | - C Sanfiorenzo
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Pneumology, Pasteur Hospital, Nice, France
| | - B Ferrua
- Inserm C3M, Archet II Hospital, Nice, France
| | - C-H Marquette
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Pneumology, Pasteur Hospital, Nice, France
| | - J Mouroux
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Department of Thoracic Surgery, Pasteur Hospital, Nice, France
| | - P Hofman
- 1] IRCAN Inserm/CNRS Team 3, CLCC Centre Antoine Lacassagne, University of Nice Sophia Antipolis, Nice, France [2] Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France [3] Tumor Biobank, Pasteur Hospital, Nice, France
| |
Collapse
|