1
|
Liu A, Li X, Zhou L, Yan X, Xia N, Song Z, Cao J, Hao Z, Zhang Z, Liang R, Zhang H. BPDE-DNA adduct formation and alterations of mRNA, protein, and DNA methylation of CYP1A1, GSTP1, and GSTM1 induced by benzo[a]pyrene and the intervention of aspirin in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106549-106561. [PMID: 37730975 DOI: 10.1007/s11356-023-29878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Benzo[a]pyrene (B[a]P), one typical environmental pollutant, the toxicity mechanisms, and potential prevention remain perplexing. Available evidence suggests cytochrome P450 1A1 (CYP1A1) and glutathione S-transferases (GSTs) metabolize B[a]P, resulting in metabolic activation and detoxification of B[a]P. This study aimed to reveal the impact of B[a]P exposure on trans-7,8-diol-anti-9,10-epoxide DNA (BPDE-DNA) adduct formation, level of CYP1A1, glutathione S-transferase pi (GSTP1) and glutathione S-transferase mu1 (GSTM1) mRNA, protein and DNA methylation in mice, and the potential prevention of aspirin (ASP). This study firstly determined the BPDE-DNA adduct formation in an acute toxicity test of a large dose in mice induced by B[a]P, which subsequently detected CYP1A1, GSTP1, and GSTM1 at levels of mRNA, protein, and DNA methylation in the organs of mice in a subacute toxicity test at appropriate doses and the potential prevention of ASP, using the methods of real-time quantitative PCR (QPCR), western blotting, and real-time methylation-specific PCR (MSP), respectively. The results verified that B[a]P induced the formation of BPDE-DNA adduct in all the organs of mice in an acute toxicity test, and the order of concentration of which was lung > kidney > liver > brain. In a subacute toxicity test, following B[a]P treatment, mice showed a dose-dependent slowdown in body weight gain and abnormalities in behavioral and cognitive function and which were alleviated by ASP co-treatment. Compared to the controls, following B[a]P treatment, CYP1A1 was significantly induced in all organs in mice at mRNA level (P < 0.05), was suppressed in the lung and cerebrum of mice at protein level, and inhibited at DNA methylation level in the liver, lung, and cerebrum, whereas GSTP1 and GSTM1 at mRNA, protein, and DNA methylation levels showed organ-specific changes in mice following B[a]P treatment, which was generally alleviated by ASP intervention. In conclusion, B[a]P induced BPDE-DNA adduct formation in all organs in mice and altered the mRNA, protein, and DNA methylation levels in CYP1A1, GSTP1, and GSTM1 in an organ-dependent pattern, which could be related to the organ toxicity and mechanism of B[a]P. ASP intervention may be an effective measure to prevent B[a]P toxicity. The findings provide scientific evidence for further study on the organ toxicity and mechanisms of B[a]P.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Department of Health Information Management, Shanxi Medical University Fenyang College, Fenyang, 032200, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Co Ltd, Taiyuan, 030003, Shanxi, China
| | - Lisha Zhou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaoqing Yan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, 030001, Shanxi, China
| | - Zhanfei Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Abstract
In first part of this study, a systematic review was designed to explore the involvement of CYP1A1 and GSTP1 genes in breast cancerogenesis. Based on systematic review, we designed a study to screen CYP1A1 and GSTP1 genes for mutation and their possible association with breast carcinogenesis. A total of 400 individuals were collected and analyzed by PCR-SSCP. After sequence analysis of coding region of CYP1A1 we identified eleven mutations in different exons of respective gene. Among these eleven mutations, ~3 folds increased breast cancer risk was found associated with Asp82Glu mutation (OR 2.99; 95% CI 1.26-7.09), with Ser83Thr mutation (OR 2.99; 95% CI 1.26-7.09) and with Glu86Ala mutation (OR 3.18; 95% CI 1.27-7.93) in cancer patients compared to controls. Furthermore, ~4 folds increase in breast cancer risk was found associated with Asp347Glu, Phe398Tyr and 5178delT mutations (OR 3.92; 95% CI 1.35-11.3) in patients compared to controls. The sequence analysis of GSTP1 resulted in identification of total five mutations. Among these five mutations, ~3 folds increase in breast cancer risk was observed associated with 1860G>A mutation, with 1861-1876delCAGCCCTCTGGAGTGG mutation (OR 2.70; 95% CI 1.10-6.62) and with 1861C>A mutation (OR 2.97; 95% CI 1.01-8.45) in cancer patients compared to controls. Furthermore, ~5 folds increase in breast cancer risk was associated with 1883G>T mutation (OR 4.75; 95% CI 1.46-15.3) and ~6 folds increase in breast cancer risk was found associated with Iso105Val mutation (OR 6.43; 95% CI 1.41-29.3) in cancer patients compared to controls. Our finding, based on systematic review and experimental data suggest that the polymorphic CYP1A1 and GSTP1 genes may contribute to risk of developing breast cancer.
Collapse
|