1
|
Khalouei A, Masoumi-Ardakani Y, Jafarzaheh A, Kalantari Khandani B, Sedghy F, Khosravi Mashizi A, Yaghoobi MM, Zangouey M, Shahouzehi B. Association of ERCC1 Gene Polymorphisms (rs3212986 and rs11615) With the Risk of Lung Cancer in a Population From Southeast Iran. J Res Health Sci 2024; 24:e00631. [PMID: 39431656 PMCID: PMC11492521 DOI: 10.34172/jrhs.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Polymorphisms within the excision repair cross-complementation group 1 (ERCC1), an essential component of DNA repair mechanisms, have been associated with various malignancies. This study aimed to evaluate the association of the single-nucleotide polymorphisms (SNPs) rs3212986 and rs11615 within the ERCC1 gene in non-small cell lung cancer (NSCLC) patients. Study Design: A case-control study. METHODS Genomic DNA was extracted from the peripheral blood samples of 83 NSCLC patients and 119 healthy individuals. The genetic diversity of SNPs rs3212986 and rs11615 was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The RFLP results were confirmed through sequencing. RESULTS The TT genotype of the rs11615 SNP was associated with a higher risk of NSCLC development (odds ratio: 3.900, 95% confidence interval: 0.603, 22.866, P=0.050). Furthermore, the AA genotype of rs3212986 was related to a higher risk of NSCLC development (OR: 2.531, 95% CI: 1.017, 6.300, P=0.046). A significant association was observed between smoking and lung cancer (OR: 3.072, 95% CI: 1.715, 5.503, P<0.001). Moreover, among non-smokers, there was an association between lung cancer risk and the AA (OR: 6.825, 95% CI: 1.722, 27.044, P=0.006) and AC (OR: 2.503, 95% CI: 0.977, 6.412, P=0.056) genotypes of rs3212986. However, no correlation was found between the genotypes of these SNPs and patients' sensitivity to cisplatin and carboplatin (P ˃ 0.05). CONCLUSION The rs11615-related TT genotype and the rs3212986-related AA genotype may be associated with a higher risk of lung cancer development.
Collapse
Affiliation(s)
- Ali Khalouei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzaheh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezu Khosravi Mashizi
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Research Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammadreza Zangouey
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Sito H, Sharzehan MAK, Islam MA, Tan SC. Genetic Variants Associated With Response to Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer Patients: A Field Synopsis and Meta-Analysis. Br J Biomed Sci 2024; 81:11835. [PMID: 38450253 PMCID: PMC10914946 DOI: 10.3389/bjbs.2024.11835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Background: Publications on the associations of genetic variants with the response to platinum-based chemotherapy (PBC) in NSCLC patients have surged over the years, but the results have been inconsistent. Here, a comprehensive meta-analysis was conducted to combine eligible studies for a more accurate assessment of the pharmacogenetics of PBC in NSCLC patients. Methods: Relevant publications were searched in PubMed, Scopus, and Web of Science databases through 15 May 2021. Inclusion criteria for eligible publications include studies that reported genotype and allele frequencies of NSCLC patients treated with PBC, delineated by their treatment response (sensitive vs. resistant). Publications on cell lines or animal models, duplicate reports, and non-primary research were excluded. Epidemiological credibility of cumulative evidence was assessed using the Newcastle-Ottawa Scale (NOS) and Venice criteria. Begg's and Egger's tests were used to assess publication bias. Cochran's Q-test and I2 test were used to calculate the odds ratio and heterogeneity value to proceed with the random effects or fixed-effects method. Venice criteria were used to assess the strength of evidence, replication methods and protection against bias in the studies. Results: A total of 121 publications comprising 29,478 subjects were included in this study, and meta-analyses were performed on 184 genetic variants. Twelve genetic variants from 10 candidate genes showed significant associations with PBC response in NSCLC patients with strong or moderate cumulative epidemiological evidence (increased risk: ERCC1 rs3212986, ERCC2 rs1799793, ERCC2 rs1052555, and CYP1A1 rs1048943; decreased risk: GSTM1 rs36631, XRCC1 rs1799782 and rs25487, XRCC3 rs861539, XPC rs77907221, ABCC2 rs717620, ABCG2 rs2231142, and CDA rs1048977). Bioinformatics analysis predicted possible damaging or deleterious effects for XRCC1 rs1799782 and possible low or medium functional impact for CYP1A1 rs1048943. Conclusion: Our results provide an up-to-date summary of the association between genetic variants and response to PBC in NSCLC patients.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Lawania S, Sharma S, Singh N, Behera D. XPF polymorphism toward lung cancer susceptibility and survival in patients treated with platinum-based chemotherapy. Future Oncol 2018; 14:1071-1089. [PMID: 29741112 DOI: 10.2217/fon-2017-0569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the association of three XPF polymorphic variants (673 C>T, 11985 A>G, G415A) with lung cancer, overall survival and clinical response in North Indians. METHODS Genotyping was performed using PCR-restriction fragment length polymorphism. RESULTS A total of 673 C>T polymorphism was associated with 1.5-fold increased lung cancer risk for heterozygous genotype (CT; p = 0.03). Adenocarcinoma patients with 673 C>T polymorphism carrying heterozygous genotype (CT) had a lower hazard ratio (p = 0.01). Classification and regression tree analysis predicted XPF 673 C>T (M) as the strongest risk factor for the lung cancer (p = 0.003). For 11985 A>G polymorphism, lung cancer subjects treated with irinotecan cisplatin/carboplatin regimen having heterozygous genotype (AG) was associated with high mortality risk (p = 0.0001). CONCLUSION 673 C>T polymorphism was associated with increased lung cancer risk.
Collapse
Affiliation(s)
- Shweta Lawania
- Department of Biotechnology, Thapar University, Punjab 147002, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar University, Punjab 147002, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| | - Digamber Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Sector 14, Chandigarh, India
| |
Collapse
|
5
|
Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A, Villar E, Valdivia-Bautista J, Faus-Dáder MJ, Calleja-Hernández MÁ. Pharmacogenetics of platinum-based chemotherapy: impact of DNA repair and folate metabolism gene polymorphisms on prognosis of non-small cell lung cancer patients. THE PHARMACOGENOMICS JOURNAL 2018; 19:164-177. [PMID: 29662106 DOI: 10.1038/s41397-018-0014-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/03/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
Chemotherapy based on platinum compounds is the standard treatment for NSCLC patients with EGFR wild type, and is also used as second line in mutated EGFR patients. Nevertheless, this therapy presents poor clinical outcomes. ERCC1, ERCC2, XRCC1, MDM2, MTHFR, MTR, and SLC19A1 gene polymorphisms may contribute to individual variation in response and survival to platinum-based chemotherapy. The aim of this study was to investigate the influence of these polymorphisms on response and survival of NSCLC patients treated with platinum-based chemotherapy. A retrospective-prospective cohorts study was conducted, including 141 NSCLC patients. Polymorphisms were analyzed by PCR real-time with Taqman® probes. Patients with ERCC1 rs3212986-GG (p = 0.0268; OR = 2.50; CI95% = 1.12-5.69) and XRCC1 rs25487-GG (p = 0.0161; OR = 2.99; CI95% = 1.26-7.62) genotype showed significantly better ORR. Cox survival analysis revealed that patients carrying the MDM2 rs1690924-GG genotype (p = 0.0345; HR = 1.99; CI95% = 1.05-3.80) presented higher risk of death. Furthermore, carriers of MTR rs1805087-A alleles (p = 0.0060; HR = 8.91; CI95% = 1.87-42.42) and SLC19A1 rs1051266-AA genotype (p = 0.0130; HR = 1.74; CI95% = 1.12-2.68) showed greater risk of progression. No influence of ERCC1 rs11615, ERCC2 rs13181, ERCC2 rs1799793, XRCC1 rs1799782, MDM2 rs1470383, MTHFR rs1801131, and MTHFR rs1801133 on platinum-based chemotherapy clinical outcomes was found. In conclusion, our results suggest that ERCC1 rs3212986, XRCC1 rs25487, MDM2 rs1690924, MTR rs1805087, and SLC19A1 rs1051266 gene polymorphisms may significantly act as predictive factors in NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, Granada, Spain.,Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071, Granada, Spain
| | - Marisa Cañadas-Garre
- Centre for Public Health, Nephrology Research Group, Queen's University Belfast, c/o Regional Genetics Centre, Level A Tower Block Belfast City Hospital Lisburn Road, Belfast, BT9 7AB, UK.
| | - Ahmed Alnatsha
- Department of Molecular Medicine, Faculty of Medicine, University of Tübingen, Geissweg 5, 72076, Tübingen, Germany
| | - Eduardo Villar
- Pathology Service, UGC Anatomía Patológica, Instituto de Investigación Biosanitaria de Granada Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014, Granada, Spain
| | - Javier Valdivia-Bautista
- Medical Oncology Service, UGC Oncología Médica Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014, Granada, Spain
| | - María José Faus-Dáder
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071, Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, Granada, Spain.,Department of Pharmacology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071, Granada, Spain
| |
Collapse
|
6
|
Chen J, Wang Z, Zou T, Cui J, Yin J, Zheng W, Jiang W, Zhou H, Liu Z. Pharmacogenomics of platinum-based chemotherapy response in NSCLC: a genotyping study and a pooled analysis. Oncotarget 2018; 7:55741-55756. [PMID: 27248474 PMCID: PMC5342450 DOI: 10.18632/oncotarget.9688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Published data showed inconsistent results about associations of extensively studied polymorphisms with platinum-based chemotherapy response. Our study aimed to provide reliable conclusions of these associations by detecting genotypes of the SNPs in a larger sample size and summarizing a comprehensive pooled analysis. 13 SNPs in 8 genes were genotyped in 1024 NSCLC patients by SequenomMassARRAY. 39 published studies and our study were included in meta-analysis. Patients with GA or GG genotypes of XRCC1 G1196 had better response than AA genotype carriers (Genotyping study: OR = 0.72, 95%CI: 0.53-0.96, P = 0.028; Meta-analysis: OR = 0.74, 95%CI: 0.62-0.89, P = 0.001). Patients carrying CT or TT genotypes of XRCC1 C580T could be more sensitive to platinum-based chemotherapy compared to patients with CC genotype (OR = 0.54, 95%CI: 0.37-0.80, P = 0.002). CC genotype of XRCC3 C18067T carriers showed more resistance to platinum-based chemotherapy when compared to those with CT or TT genotypes (OR = 0.69, 95%CI: 0.52-0.91, P = 0.009). Our study indicated that XRCC1 G1196A/C580T and XRCC3 C18067T should be paid attention for personalized platinum-based chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jiajia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
7
|
Hamilton G, Rath B. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1. Expert Opin Drug Metab Toxicol 2017; 14:17-24. [PMID: 29226731 DOI: 10.1080/17425255.2018.1416095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The efficacy of platinum-based chemotherapy for patients with non-small cell lung cancer (NSCLC) is limited by chemoresistance. Platinum drugs damage DNA by introducing intrastrand and interstrand crosslinks which result in cell death. Excision repair cross-complementing 1 (ERCC1) is a member of the nucleotide excision repair (NER) pathway which erases such defects. Single nucleotide polymorphisms (SNPs) in ERCC1 impair this activity and have been suggested to predict the response to chemotherapy. Area covered: Among the polymorphisms of proteins involved in uptake, metabolism, cytotoxicity and efflux of platinum drugs, codon 118 C/T and C8092A in ERCC1 are the best characterized SNPs studied for their predictive power. Here, the divergent results for studies of these markers in NSCLC are summarized and the reasons for this contradictory data discussed. Expert opinion: Cytotoxicity of platinum compounds comprise complex cellular processes for which DNA repair may not constitute the rate limiting step. These drugs are administered as doublets to histologically diverse patients and, furthermore, the NER pathway in ERCC1 wildtype cohorts may be still impaired by the chemotherapeutics applied. At present, assessment of a limited number of polymorphism in DNA repair proteins is not reliably associated with response to treatment in NSCLC patients.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
8
|
Tan LM, Qiu CF, Zhu T, Jin YX, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. Genetic Polymorphisms and Platinum-based Chemotherapy Treatment Outcomes in Patients with Non-Small Cell Lung Cancer: A Genetic Epidemiology Study Based Meta-analysis. Sci Rep 2017; 7:5593. [PMID: 28717179 PMCID: PMC5514117 DOI: 10.1038/s41598-017-05642-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Data regarding genetic polymorphisms and platinum-based chemotherapy (PBC) treatment outcomes in patients with NSCLC are published at a growing pace, but the results are inconsistent. This meta-analysis integrated eligible candidate genes to better evaluate the pharmacogenetics of PBC in NSCLC patients. Relevant studies were retrieved from PubMed, Chinese National Knowledge Infrastructure and WANFANG databases. A total of 111 articles comprising 18,196 subjects were included for this study. The associations of genetic polymorphisms with treatment outcomes of PBC including overall response rate (ORR), overall survival (OS) and progression-free survival (PFS) were determined by analyzing the relative risk (RR), hazard ration (HR), corresponding 95% confidence interval (CI). Eleven polymorphisms in 9 genes, including ERCC1 rs11615 (OS), rs3212986 (ORR), XPA rs1800975 (ORR), XPD rs1052555 (OS, PFS), rs13181 (OS, PFS), XPG rs2296147 (OS), XRCC1 rs1799782 (ORR), XRCC3 rs861539 (ORR), GSTP1 rs1695 (ORR), MTHFR rs1801133 (ORR) and MDR1 rs1045642 (ORR), were found significantly associated with PBC treatment outcomes. These variants were mainly involved in DNA repair (EXCC1, XPA, XPD, XPG, XRCC1 and XRCC3), drug influx and efflux (MDR1), metabolism and detoxification (GSTP1) and DNA synthesis (MTHFR), and might be considered as potential prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Cheng-Feng Qiu
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Yuan-Xiang Jin
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China.
| |
Collapse
|
9
|
Yu SN, Liu GF, Li XF, Fu BH, Dong LX, Zhang SH. Evaluation of Prediction of Polymorphisms of DNA Repair Genes on the Efficacy of Platinum-Based Chemotherapy in Patients With Non-Small Cell Lung Cancer: A Network Meta-Analysis. J Cell Biochem 2017; 118:4782-4791. [PMID: 28520216 DOI: 10.1002/jcb.26147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 12/22/2022]
Abstract
This network meta-analysis (NMA) was conducted to compare the predictive value of 14 SNPs in eight DNA repair genes on the efficacy of platinum-based chemotherapy in patients with non-small cell lung cancer (NSCLC). These included ERCC1 (rs11615, rs3212986, rs3212948), XRCC1 (rs25487, rs25489, rs1799782), XPD (rs13181, rs1799793), XPG (rs1047768, rs17655), XPA (rs1800975), XRCC3 (rs861539), APE1 (rs3136820), and RRM1 (rs1042858). The PubMed and Cochrane library databases were reviewed from their inception to February 2017 and studies which met our inclusion criteria were included in our investigation. This network meta-analysis combines direct and indirect evidence to assess the predictive value of 14 SNPs in eight DNA repair genes on the efficacy of platinum-based chemotherapy in NSCLC. We evaluated the predictive value through the use of the odd ratios (OR) and drawing surface under the cumulative ranking curves (SUCRA). A total of 26 eligible cohort studies were enrolled in this NMA. The pairwise meta-analysis indicated that in terms of overall response ratio (ORR), ERCC1 (rs11615), XRCC1 (rs25487, rs1799782), and XPD (rs13181) polymorphisms are associated with the efficacy of platinum-based chemotherapy in NSCLC. The result of this NMA suggests that there is no significant difference in predictive value of 8 DNA repair genes on the efficacy of platinum-based chemotherapy in NSCLC patients. The rank of SUCRA values of the 14 SNPs in the eight DNA repair genes were: XPD (rs1799793)→ERCC1 (rs3212986)→XPA(rs1800975)→ERCC1(rs3212948)→XRCC1(rs25487)→XRCC3(rs861539)→APE1(rs3136820)→ERCC1(rs11615)→XRCC1(rs1799782)→RRM1(rs1042858)→XPD(rs13181)→XPG (rs1047768)→XPG(rs17655)→XRCC1(rs25489). ERCC1(rs11615), XRCC1(rs25487, rs1799782) and XPD(rs13181) polymorphisms were better predictors in evaluating the efficacy of platinum-based chemotherapy in NSCLC patients. J. Cell. Biochem. 118: 4782-4791, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Bao-Hong Fu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Li-Xin Dong
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Shu-Hua Zhang
- Operating Room, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| |
Collapse
|
10
|
Xiong Y, Huang BY, Yin JY. Pharmacogenomics of platinum-based chemotherapy in non-small cell lung cancer: focusing on DNA repair systems. Med Oncol 2017; 34:48. [PMID: 28215024 DOI: 10.1007/s12032-017-0905-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/12/2017] [Indexed: 12/18/2022]
Abstract
Drug therapy for non-small cell lung cancer consists mainly of platinum-based chemotherapy regimens. However, toxicity, drug resistance, and high risk of death have been seen in the clinic, which means there is a need for optimizing the use of medications. Platinum resistance could be mediated by a series of DNA repair pathways, and therefore, these pathways should be taken into account for optimizing drug using. The goal of pharmacogenomics is to elucidate genetic factors, such as DNA repair genes, which might underlie drug efficacy and effectiveness, and to improve therapeutic effects or guide personalized therapy as well. Here, we reviewed the current knowledge of pharmacogenomic data on DNA repair systems and examined whether they could be further translated into the clinic with evidence-based perspectives.
Collapse
Affiliation(s)
- Yi Xiong
- Xiangya School of Medicine, Central South University, Changsha, 410008, People's Republic of China
| | - Bi-Yun Huang
- Institute of Information Security and Big Data, Central South University, Changsha, 410008, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
11
|
Contribution of genetic factors to platinum-based chemotherapy sensitivity and prognosis of non-small cell lung cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:32-58. [DOI: 10.1016/j.mrrev.2016.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/16/2016] [Indexed: 11/20/2022]
|
12
|
Xiao M, Xiao S, Straaten TVD, Xue P, Zhang G, Zheng X, Zhang Q, Cai Y, Jin C, Yang J, Wu S, Zhu G, Lu X. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 812:39-47. [PMID: 27908386 DOI: 10.1016/j.mrgentox.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens.
Collapse
Affiliation(s)
- Mingyang Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Sha Xiao
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Tahar van der Straaten
- Dept. Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ping Xue
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guopei Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiao Zheng
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Qianye Zhang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuan Cai
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Cuihong Jin
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Jinghua Yang
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Shengwen Wu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Guolian Zhu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China
| | - Xiaobo Lu
- Dept. of Toxicology, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
13
|
Yin JY, Li X, Zhou HH, Liu ZQ. Pharmacogenomics of platinum-based chemotherapy sensitivity in NSCLC: toward precision medicine. Pharmacogenomics 2016; 17:1365-78. [PMID: 27462924 DOI: 10.2217/pgs-2016-0074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death in the world. Platinum-based chemotherapy is the first-line treatment for non-small-cell lung cancer (NSCLC), however, the therapeutic efficiency varies remarkably among individuals. A large number of pharmacogenomics studies aimed to identify genetic variations which can be used to predict platinum response. Those studies are leading NSCLC treatment to the new era of precision medicine. In the current review, we provided a comprehensive update on the main recent findings of genetic variations which can be used to predict platinum sensitivity in the NSCLC patients.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| |
Collapse
|
14
|
Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer? Cancer Treat Rev 2016; 48:8-19. [DOI: 10.1016/j.ctrv.2016.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
|
15
|
A Significant Statistical Advancement on the Predictive Values of ERCC1 Polymorphisms for Clinical Outcomes of Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer: An Updated Meta-Analysis. DISEASE MARKERS 2016; 2016:7643981. [PMID: 27057082 PMCID: PMC4745870 DOI: 10.1155/2016/7643981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Background. There is no definitive conclusion so far on the predictive values of ERCC1 polymorphisms for clinical outcomes of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). We updated this meta-analysis with an expectation to obtain some statistical advancement on this issue. Methods. Relevant studies were identified by searching MEDLINE, EMBASE databases from inception to April 2015. Primary outcomes included objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). All analyses were performed using the Review Manager version 5.3 and the Stata version 12.0. Results. A total of 33 studies including 5373 patients were identified. ERCC1 C118T and C8092A could predict both ORR and OS for platinum-based chemotherapy in Asian NSCLC patients (CT + TT versus CC, ORR: OR = 0.80, 95% CI = 0.67–0.94; OS: HR = 1.24, 95% CI = 1.01–1.53) (CA + AA versus CC, ORR: OR = 0.76, 95% CI = 0.60–0.96; OS: HR = 1.37, 95% CI = 1.06–1.75). Conclusions. Current evidence strongly indicated the prospect of ERCC1 C118T and C8092A as predictive biomarkers for platinum-based chemotherapy in Asian NSCLC patients. However, the results should be interpreted with caution and large prospective studies are still required to further investigate these findings.
Collapse
|