1
|
Cerapio JP, Gravelle P, Quillet-Mary A, Valle C, Martins F, Franchini DM, Syrykh C, Brousset P, Traverse-Glehen A, Ysebaert L, Fournie JJ, Laurent C. Integrated spatial and multimodal single-cell transcriptomics reveal patient-dependent cell heterogeneity in splenic marginal zone lymphoma. J Pathol 2024; 263:442-453. [PMID: 38828498 DOI: 10.1002/path.6296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Biological hallmarks of splenic marginal zone lymphoma (SMZL) remain poorly described. Herein, we performed in-depth SMZL characterization through multimodal single-cell analyses of paired blood/spleen samples. The 3'-single-cell RNA-sequencing, Cellular Indexing of Transcriptomes and Epitopes by sequencing, and 5'-V(D)J single-cell RNA-sequencing datasets were integrated to characterize SMZL transcriptome profiles, including B-cell receptor and T-cell receptor repertoires. Hyperexpanded B-cell clones in the spleen were at a memory-like stage, whereas recirculating tumor B-cells in blood encompassed multiple differentiation stages, indicating an unexpected desynchronization of the B-cell maturation program in SMZL cells. Spatial transcriptomics showed the enrichment of T-effector and T-follicular helper (TFH) signatures in the nodular subtype of SMZL. This latter also exhibited gene-based cell-cell interactions suggestive of dynamic crosstalk between TFH and cancer cells in transcriptomics, further substantiated by using imaging mass cytometry. Our findings provide a comprehensive high-resolution description of SMZL biological hallmarks and characterize, for the first time in situ, inter- and intra-patient heterogeneity at both transcriptomic and protein levels. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Juan Pablo Cerapio
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| | - Pauline Gravelle
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Anne Quillet-Mary
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
| | - Carine Valle
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| | - Frederic Martins
- Institut Maladies Metaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, France
| | - Don-Marc Franchini
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Charlotte Syrykh
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Pierre Brousset
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | | | - Loic Ysebaert
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Jean-Jacques Fournie
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
| | - Camille Laurent
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| |
Collapse
|
2
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
3
|
Zhang Y, Han S, Xiao X, Zheng L, Chen Y, Zhang Z, Gao X, Zhou S, Yu K, Huang L, Fu J, Hong Y, Jiang J, Qian W, Yang H, Shen J. Integration analysis of tumor metagenome and peripheral immunity data of diffuse large-B cell lymphoma. Front Immunol 2023; 14:1146861. [PMID: 37234150 PMCID: PMC10206395 DOI: 10.3389/fimmu.2023.1146861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background/purpose It has been demonstrated that gut microbes are closely associated with the pathogenesis of lymphoma, but the gut microbe landscape and its association with immune cells in diffuse large B-cell lymphoma (DLBCL) remain largely unknown. In this study, we explored the associations between gut microbiota, clinical features and peripheral blood immune cell subtypes in DLBCL. Method A total of 87 newly diagnosed DLBCL adults were enrolled in this study. The peripheral blood samples were collected from all patients and then submitted to immune cell subtyping using full-spectral flow cytometry. Metagenomic sequencing was applied to assess the microbiota landscape of 69 of 87 newly diagnosed DLBCL patients. The microbiotas and peripheral blood immune cell subsets with significant differences between different National Comprehensive Center Network-International Prognostic Indexes (NCCN-IPIs) (low-risk, low-intermediate-risk, intermediate-high-risk, high-risk) groups were screened. Results A total of 10 bacterial phyla, 31 orders and 455 bacteria species were identified in 69 patients with newly diagnosed DLBCL. The abundances of 6 bacteria, including Blautia sp.CAG 257, Actinomyces sp.S6 Spd3, Streptococcus parasanguinis, Bacteroides salyersiae, Enterococcus faecalls and Streptococcus salivarius were significantly different between the low-risk, low-intermediate-risk, intermediate-high-risk and high-risk groups, among which Streptococcus parasanguinis and Streptococcus salivarius were markedly accumulated in the high-risk group. The different bacteria species were mostly enriched in the Pyridoxal 5'-phosphate biosynthesis I pathway. In addition, we found that 2 of the 6 bacteria showed close associations with the different immune cell subtypes which were also identified from different NCCN-IPIs. In detail, the abundance of Bacteroides salyersiae was negatively correlated with Treg cells, CD38+ nonrescue exhausted T cells, nature killer 3 cells and CD38+CD8+ effector memory T cells, while the abundance of Streptococcus parasanguinis was negatively correlated with HLA-DR+ NK cells, CD4+ Treg cells, HLA-DR+ NKT cells and HLA-DR+CD94+CD159c+ NKT cells. Conclusion This study first reveals the gut microbiota landscape of patients with newly diagnosed DLBCL and highlights the association between the gut microbiota and immunity, which may provide a new idea for the prognosis assessment and treatment of DLBCL.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiyun Han
- Department of Lymphoma, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Xibing Xiao
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zheng
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| | - Yingying Chen
- Department of Hematology, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Zhijian Zhang
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| | - Xinfang Gao
- Department of Hematology, Jinhua People’s Hospital, Jinhua, China
| | - Shujuan Zhou
- Department of Hematology, The First Hospital Affiliated to Wenzhou Medical University, Weizhou, China
| | - Kang Yu
- Department of Hematology, The First Hospital Affiliated to Wenzhou Medical University, Weizhou, China
| | - Li Huang
- Department of Hematology, Jinhua People’s Hospital, Jinhua, China
| | - Jiaping Fu
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| | - Yongwei Hong
- Department of Hematology, Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Jinhong Jiang
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Yang
- Department of Lymphoma, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China
| | - Jianping Shen
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Garcia-Lacarte M, Grijalba SC, Melchor J, Arnaiz-Leché A, Roa S. The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers (Basel) 2021; 13:4683. [PMID: 34572910 PMCID: PMC8471895 DOI: 10.3390/cancers13184683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sara C. Grijalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Javier Melchor
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adrián Arnaiz-Leché
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Network Center for Biomedical Research in Cancer—Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Shin HJ, Kim DY, Chung J, Shin KH, Lee H. Prognostic Impact of Peripheral Blood T-Cell Subsets at the Time of Diagnosis on Survival in Patients with Diffuse Large B-Cell Lymphoma. Acta Haematol 2020; 144:427-437. [PMID: 33271543 DOI: 10.1159/000510912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The effects of lymphocyte subtypes, including helper (Th), natural killer (NK), and regulatory (Treg) cells, and other T-cell subtypes on treatment outcomes in diffuse large B-cell lymphoma (DLBCL) patients are not clearly established. METHODS Among 151 consecutive patients diagnosed with DLBCL, we collected peripheral blood samples at diagnosis from 91 patients who received at least 1 cycle of R-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab) chemotherapy and analyzed lymphocyte subsets by flow cytometry. RESULTS DLBCL patients had a higher proportion of CD4+CD25+ Treg (p < 0.001) and lower absolute lymphocyte count than those of healthy controls. Lymphopenia at diagnosis was associated with advanced-stage disease (p = 0.001), a high-intermediate/high-risk International Prognostic Index (IPI) (p < 0.001), and older age (p = 0.060). High-intermediate/high-risk IPI, high proportion of CD3+CD4+ Th cells, and extranodal site ≥2 correlated with unfavorable prognostic factors for survival. High proportion of Th cells was associated with fewer cytotoxic T cells and NK cells at the time of diagnosis. CONCLUSION This study showed an association between circulating lymphocyte subsets including Th cells, Tregs, and NK cells and clinical outcomes in DLBCL; however, further confirmation is needed via prospective trials.
Collapse
Affiliation(s)
- Ho-Jin Shin
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea,
| | - Do-Young Kim
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - JooSeop Chung
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyung-Hwa Shin
- Department of Laboratory Medicine, Pusan National University Hospital, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyungi Lee
- Clinical Trial Center, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, Ge F, Dong H, Hao Y, Cai L, Wu S, Feng C, Chen J, Li J, Xu W, Fan L, Xie W, Tong Y, Gu HF, Wu L. IL-21 Stimulates the expression and activation of cell cycle regulators and promotes cell proliferation in EBV-positive diffuse large B cell lymphoma. Sci Rep 2020; 10:12326. [PMID: 32704112 PMCID: PMC7378064 DOI: 10.1038/s41598-020-69227-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical features of EBV-positive diffuse large B cell lymphoma (DLBCL) indicate a poorer prognosis than EBV-negative DLBCL. Currently, there is no efficacious drug for EBV-positive DLBCL. The cytokine interleukin-21 (IL-21) has been reported to be pro-apoptotic in DLBCL cell lines and is being explored as a new therapeutic strategy for this type of lymphomas. However, our previous studies showed that IL-21 stimulation of EBV-positive DLBCL cell lines leads to increased proliferation. Here, analysis of a rare clinical sample of EBV-positive DLBCL, in combination with a NOD/SCID mouse xenograft model, confirmed the effect of IL-21 on the proliferation of EBV-positive DLBCL cells. Using RNA-sequencing, we identified the pattern of differentially-expressed genes following IL-21 treatment and verified the expression of key genes at the protein level using western blotting. We found that IL-21 upregulates expression of the host MYC and AP-1 (composed of related Jun and Fos family proteins) and STAT3 phosphorylation, as well as expression of the viral LMP-1 protein. These proteins are known to promote the G1/S phase transition to accelerate cell cycle progression. Furthermore, in NOD/SCID mouse xenograft model experiments, we found that IL-21 treatment increases glucose uptake and angiogenesis in EBV-positive DLBCL tumours. Although more samples are needed to validate these observations, our study reconfirms the adverse effects of IL-21 on EBV-positive DLBCL, which has implications for the drug development of DLBCL.
Collapse
Affiliation(s)
- Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chengcheng Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chang Mou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueting Cui
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Ge
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuting Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenjie Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Tong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest Feng Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Cha Z, Gu H, Zang Y, Wang Z, Li J, Huang W, Qin A, Zhu L, Tu X, Cheng N, Song H, Qian B. The prevalence and function of CD4 +CXCR5 +Foxp3 + follicular regulatory T cells in diffuse large B cell lymphoma. Int Immunopharmacol 2018; 61:132-139. [PMID: 29870918 DOI: 10.1016/j.intimp.2018.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022]
Abstract
CD4+CXCR5+Foxp3+ follicular regulatory T (Tfr) cells possess critical roles in suppressing the germinal center reaction, B cell activation, and follicular helper T cell (Tfh) cytokine secretion. Since diffuse large B cell lymphoma (DLBCL) can arise from B cells undergoing germinal center reaction and/or differentiation, we hypothesized that Tfr cells might be involved in DLBCL. In the present study, we recruited thirty-five DLBCL patients and twenty-five healthy controls. Data showed that DLBCL patients presented an enrichment of circulating CD4+CXCR5+Foxp3+ Tfr cells compared to controls. In the primary tumor isolated from enlarged lymph nodes, Tfr cells made up of roughly 3% to 16% of infiltrating T cells. Higher levels of tumor-infiltrating Tfr cells were observed in patients with less advanced DLBCL stages, and in patients that stayed in remission 24 months after the initial R-CHOP treatment. High BCL6 and high FOXP3 expression was observed in Tfr cells ex vivo. After anti-CD3/CD28 and IL-2 stimulation, the Tfr cells more closely resembled Treg cells and presented high IL10 and TGFB1 expression. CD4+CD25+CXCR5+ Tfr cells and CD4+CD25+CXCR5- non-Tfr Treg cells could suppress CD4+CD25- Tconv cell and CD8+ T cell proliferation with similar capacity. However, Tfr cells were less capable of suppressing IFNG expression than Treg cells, and although both cell types supported CD19+ tumor cell proliferation, Tfr cells were less supportive than the non-Tfr Treg cells. Overall, this study suggested that Tfr cells were involved in intratumoral immunity, were likely beneficial to DLBCL patients, and were functionally distinctive from non-Tfr Treg cells. The distribution pattern and the prognostic value of Tfr cells in DLBCL should be examined in further studies.
Collapse
Affiliation(s)
- Zhanshan Cha
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Haihui Gu
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Yan Zang
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Zi Wang
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Jinqi Li
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Weihua Huang
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Aihua Qin
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Lishuang Zhu
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Xiaohua Tu
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Ning Cheng
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Haihan Song
- Emergency Center, East Hospital, Shanghai 200120, China
| | - Baohua Qian
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Byford ET, Carr M, Ladikou E, Ahearne MJ, Wagner SD. Circulating Tfh1 (cTfh1) cell numbers and PD1 expression are elevated in low-grade B-cell non-Hodgkin's lymphoma and cTfh gene expression is perturbed in marginal zone lymphoma. PLoS One 2018; 13:e0190468. [PMID: 29293620 PMCID: PMC5749831 DOI: 10.1371/journal.pone.0190468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023] Open
Abstract
CD4+ T-cell subsets are found in the tumour microenvironment (TME) of low-grade B-cell non-Hodgkin’s lymphomas such as marginal zone lymphoma (MZL) or follicular lymphoma (FL). Both numbers and architecture of activating follicular helper T-cells (Tfh) and suppressive Treg in the TME of FL are associated with clinical outcomes. There has been almost no previous work on CD4+ T-cells in MZL. It is now recognised that circulating CD4+CXCR5+ T-cells are the memory compartment of Tfh cells. We determined differences in number of circulating Tfh (cTfh) cells and cTfh subsets between normal subjects and patients with FL or MZL. Lymphoma patients showed increased numbers of cTfh1 and reduced cTfh17 cells due to decreased expression of the subset-defining marker CCR6 in patients. PD1, a surface marker associated with Tfh cells, showed increased expression on cTfh subsets in patients. Focusing on MZL we determined expression of 96 T-cell associated genes by microfluidic qRT-PCR. Analysis of differentially expressed genes showed significant differences between normal subjects and patients both for bulk cTfh (CCL4) and the cTfh1 subset (JAK3). While our findings require confirmation in larger studies we suggest that analysis of number and gene expression of circulating T-cells might be a source of clinically useful information as is the case for T-cells within lymphoma lymph nodes.
Collapse
Affiliation(s)
- Elliot T. Byford
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Matthew Carr
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Eleni Ladikou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Matthew J. Ahearne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res 2016; 350:154-160. [PMID: 27888017 DOI: 10.1016/j.yexcr.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5+ CD4+ T cells, in DLBCL. Data showed that compared to CXCR5- CD4+ T cells, CXCR5+ CD4+ T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5+ CD4+ T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5- CD4+ T cells, while the level of IL-10 secretion was significant elevated in the CXCR5+ compartment compared to the CXCR5- compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5+ CD4+ T cell coculture compromised the CXCR5+ CD4+ T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5+ compartment also contained significantly lower frequencies of cytotoxic CD4+ T cells than the CXCR5- compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4+ T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10.
Collapse
|
10
|
Hercor M, Anciaux M, Denanglaire S, Debuisson D, Leo O, Andris F. Antigen-presenting cell-derived IL-6 restricts the expression of GATA3 and IL-4 by follicular helper T cells. J Leukoc Biol 2016; 101:5-14. [PMID: 27474166 DOI: 10.1189/jlb.1hi1115-511r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Follicular helper T cells (Tfh) support high-affinity Ab production by germinal center B cells through both membrane interactions and secretion of IL-4 and -21, two major cytokines implicated in B-cell survival and Ab class switch. Tfh-2 cells recently emerged in humans as a strong IL-4 producer Tfh cell subset implicated in both autoimmune and allergic diseases. Although the molecular mechanisms governing Tfh cell differentiation from naive T cells have been widely described, much less is known about the regulation of cytokine secretion by mouse Tfh-2 cells. The purpose of our study was to evaluate the role of dendritic cell-derived IL-6 in fine-tuning cytokine secretion by Tfh cells. Our results demonstrate that priming of Th cells by IL-6-deficient antigen-presenting dendritic cells preferentially leads to accumulation of a subset of Tfh cells characterized by high expression of GATA3 and IL-4, associated with reduced production of IL-21. STAT3-deficient Tfh cells also overexpress GATA3, suggesting that early IL-6/STAT3 signaling during Tfh cell development inhibits the expression of a set of genes associated with the Th2 differentiation program. Overall, our data indicate that IL-6/STAT3 signaling restrains the expression of Th2-like genes in Tfh cells, thus contributing to the control of IgE secretion in vivo.
Collapse
Affiliation(s)
- Mélanie Hercor
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | - Maelle Anciaux
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | | | | | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | - Fabienne Andris
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| |
Collapse
|