1
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Fibroblast Growth Factor 11 (FGF11) Promotes Progression and Cisplatin Resistance Through the HIF-1α/FGF11 Signaling Axis in Ovarian Clear Cell Carcinoma. Cancer Manag Res 2023; 15:753-763. [PMID: 37525667 PMCID: PMC10387280 DOI: 10.2147/cmar.s414703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Background A poor prognosis is often associated with ovarian clear cell carcinoma (OCCC) due to its relative resistance to platinum-based chemotherapy. Although several studies have been launched to explore the pathogenesis of OCCC, the mechanism of chemoresistance has yet to be uncovered. Methods Nanostring nCounter PanCancer Pathways Panel was performed to explore the expression profiles of OCCC tissues from patients showing different platinum sensitivity. Bioinformatic analysis was performed to select genes associated with chemoresistance and cell function assays, including colony formation, wound healing, transwell and flow cytometric analysis, were used to explore the role of the target gene in the progression of OCCC and resistance to cisplatin (DDP). Results Gene expression profiles and bioinformatic analysis verified that the expression of fibroblast growth factor 11 (FGF11) was significantly increased in platinum-resistant OCCC tissues and increased FGF11 expression was related to poorer survival. Downregulation of FGF11 inhibited the proliferation, migration, and invasion, reversing the DDP resistance of OCCC cells. Mechanically, FGF11 was regulated by hypoxia-inducible factor-1α (HIF-1α) to modulate the DDP sensitivity. Conclusion FGF11 was highly expressed in platinum-resistant OCCC tissues, promoting progression and resistance to DDP through the HIF-1α/FGF11 signaling axis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunli Lu
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, People’s Republic of China
| | - Huimei Zhou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qian Liu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaxin Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 α signaling pathway. Sci Rep 2023; 13:170. [PMID: 36599894 DOI: 10.1038/s41598-022-26700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise has been shown to be associated with reduced risk and improving outcomes of several types of cancers. Irisin -a novel exercise-related myokine- has been proposed to exert beneficial effects in metabolic disorders including cancer. No previous studies have investigated whether irisin may regulate malignant characteristics of ovarian cancer cell lines. In the present study, we aimed to explore the effect of irisin on viability and proliferation of ovarian cancer cells which was examined by MTT assay. Then, we evaluated the migratory and invasive abilities of the cells via transwell assays. Moreover, the percentage of apoptosis induction was determined by flow cytometry. Furthermore, the mRNA expression level of genes related to the aerobic respiration (HIF-1α, c-Myc, LDHA, PDK1 and VEGF) was detected by real-time PCR. Our data revealed that irisin treatment significantly attenuated the proliferation, migration and invasion of ovarian cancer cells. Additionally, irisin induced apoptosis in ovarian cancer cells. We also observed that irisin regulated the expression of genes involved in aerobic respiration of ovarian cancer cells. Our results indicated that irisin may play a crucial role in inhibition of cell growth and malignant characteristics of ovarian cancer. These findings may open up avenues for future studies to identify the further therapeutic use of irisin in ovarian cancer management.
Collapse
|
3
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Subhan A, Attia SA, P Torchilin V. Targeted siRNA nanotherapeutics against breast and ovarian metastatic cancer: a comprehensive review of the literature. Nanomedicine (Lond) 2021; 17:41-64. [PMID: 34930021 DOI: 10.2217/nnm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metastasis is considered the major cause of unsuccessful cancer therapy. The metastatic development requires tumor cells to leave their initial site, circulate in the blood stream, acclimate to new cellular environments at a remote secondary site and endure there. There are several steps in metastasis, including invasion, intravasation, circulation, extravasation, premetastatic niche formation, micrometastasis and metastatic colonization. siRNA therapeutics are appreciated for their usefulness in treatment of cancer metastasis. However, siRNA therapy as a single therapy may not be a sufficient option for control of metastasis. By combining siRNA with targeting, functional agents or small-molecule drugs have shown potential effects that enhance therapeutic effectiveness. This review addresses multidrug resistance and metastasis in breast and ovarian cancers and highlights drug-delivery strategies using siRNA therapeutics.
Collapse
Affiliation(s)
- Abdus Subhan
- Department of Chemistry, ShahJalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.,Department of Oncology, Radiotherapy & Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
5
|
Ni J, Ni A. Histone deacetylase inhibitor induced pVHL-independent degradation of HIF-1α and hierarchical quality control of pVHL via chaperone system. PLoS One 2021; 16:e0248019. [PMID: 34329303 PMCID: PMC8323912 DOI: 10.1371/journal.pone.0248019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The mortality rate of ovarian cancer is increasing and the role of hypoxia inducible factor-1α (HIF-1α) in tumor progression has been confirmed. von Hippel-Lindau tumor suppressor protein (pVHL) binds HIF-1α and mediates proteasome degradation of HIF-1α. Besides, histone deacetylase inhibitor (HDACi) mitigates tumor growth via targeting HIF-1α, whereas underlying mechanism still requires investigation. In this research, we exposed ovarian cancer cell lines OV-90 and SKOV-3 to escalating concentrations of HDACi LBH589. As a result, cell viability was significantly suppressed and expression of HIF-1α was remarkably reduced along with decreased levels of signal molecules, including phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) (P = 0.000). Interestingly, pVHL was expressed in a notably declining tendency (P = 0.000). Chaperone heat shock protein-70 (HSP70) was expressed in an ascending manner, whereas expression of chaperonin TCP-1α was reduced clearly (P = 0.000). Besides, co-inhibition of pVHL plus HDAC did not contribute to a remarkable difference in HIF-1α expression as compared with single HDAC inhibition. Furthermore, both cell lines were transfected with plasmids of VHL plus VHL binding protein-1 (VBP-1). Consequently, the expression of HIF-1α as well as lactate dehydrogenase-A (LDHA) was remarkably decreased (P = 0.000). These findings indicate HDACi may repress expression of HIF-1α via inhibiting PI3K and GSK3β and promote degradation of HIF-1α via HSP70, independent of pVHL. Additionally, a sophisticated network of HDAC and chaperones may involve in pVHL quality control.
Collapse
Affiliation(s)
- Jieming Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Anping Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Xu S, Yu C, Ma X, Li Y, Shen Y, Chen Y, Huang S, Zhang T, Deng W, Wang Y. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur J Pharmacol 2021; 894:173817. [PMID: 33345849 DOI: 10.1016/j.ejphar.2020.173817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The inflammatory milieu in tumor modulates the resistance to the conventional antitumoral therapies. Interleukin-6 (IL-6), a pleiotropic pro-inflammatory cytokine and a crucial mediator of tumor development, has been targeted as a therapeutic strategy to overcome chemoresistance in the treatment of tumors. The protein levels and nuclear translocation of HIFs (hypoxia-inducible factors), such as HIF-1α, are linked to the drug resistance of tumor cells. However, whether IL-6 promotes the nuclear translocation of HIF-1α and the related mechanism remain to be investigated. We applied two ovarian cancer (OvCa) cell lines, A2780 cells and SKOV3 cells for the in vivo and in vitro studies. We found that IL-6 up-regulates the HIF-1α expression via the signal transducer and activator of transcription 3 (STAT3) signaling under hypoxia in either endogenous or exogenous way, and then we proved that IL-6 enhances the transcriptional activity of HIF-1α via the STAT3 signaling. Further mechanism research revealed that IL-6 promotes the nuclear translocation of HIF-1α through the STAT3 signaling under hypoxia. Proliferation assay and apoptosis assay were applied and proved that IL-6 enhances the chemoresistance of OvCa cells against cisplatin through the upregulation of HIF-1α via the STAT3 signaling in vitro. The In vivo studies confirmed the effect of IL-6 in increasing the chemoresistance of OvCa cells against cisplatin through the IL-6/STAT3/HIF-1α loop in the animal models. Our data elucidates the explicit mechanism of IL-6/STAT3/HIF-1α loop in OvCa and also provides new insights into the development of different approaches for the inflammation-induced and hypoxia-induced resistance in tumor therapies.
Collapse
Affiliation(s)
- Shiwen Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Niusai Biotechnology Co., Ltd, Tianjin, 300381, China
| | - Chunyan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxia Ma
- Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300308, China
| | - Yan Li
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yangyang Shen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Chen
- Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang Province, 315336, China
| | - Suhui Huang
- Department of Pathogenic Biology and Immunology, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Tongshuo Zhang
- Department of Pathogenic Biology and Immunology, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Weimin Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Méndez-Blanco C, Fernández-Palanca P, Fondevila F, González-Gallego J, Mauriz JL. Prognostic and clinicopathological significance of hypoxia-inducible factors 1α and 2α in hepatocellular carcinoma: a systematic review with meta-analysis. Ther Adv Med Oncol 2021; 13:1758835920987071. [PMID: 33613697 PMCID: PMC7874357 DOI: 10.1177/1758835920987071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly recurrent tumor after resection and has been closely related to hypoxia. Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) have been shown to contribute to tumor progression and therapy resistance in HCC. We evaluated the prognostic and clinicopathological significance of HIF-1α and HIF-2α in HCC patients. Methods: We systematically searched Embase, Cochrane, PubMed, Scopus and Web of Science (WOS) from inception to 1 June 2020 for studies evaluating HIF-1α and/or HIF-2α expression in HCC. Selected articles evaluate at least one factor by immunohistochemistry (IHC) in HCC patients who underwent surgical resection, and its relationship with prognosis and/or clinicopathological features. Study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CDR42020191977). We meta-analyzed the data extracted or estimated according to the Parmar method employing STATA software. We evaluated the overall effect size for the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI), as well as heterogeneity across studies with the I2 statistic and chi-square-based Q test. Moreover, we conducted subgroup analysis when heterogeneity was substantial. Publication bias was assessed by funnel plot asymmetry and Egger’s test. Results: HIF-1α overexpression was correlated with overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS) and clinicopathological features including Barcelona Clinic Liver Cancer (BCLC), capsule infiltration, intrahepatic metastasis, lymph node metastasis, tumor–node–metastasis (TNM), tumor differentiation, tumor number, tumor size (3 cm), vascular invasion and vasculogenic mimicry. We also detected a possible correlation of HIF-1α with alpha-fetoprotein (AFP), cirrhosis, histological grade, tumor size (5 cm) and albumin after subgroup analysis. Initially, only DFS/RFS appeared to be associated with HIF-2α overexpression. Subgroup analysis denoted that HIF-2α overexpression was related to OS and capsule infiltration. Conclusions: HIF-1α and HIF-2α overexpression is related to poor OS, DFS/RFS and some clinicopathological features of HCC patients, suggesting that both factors could be useful HCC biomarkers.
Collapse
Affiliation(s)
| | | | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, León 24071, Spain
| |
Collapse
|
8
|
Zhang H, Yang Q, Lian X, Jiang P, Cui J. Hypoxia-Inducible Factor-1α (HIF-1α) Promotes Hypoxia-Induced Invasion and Metastasis in Ovarian Cancer by Targeting Matrix Metallopeptidase 13 (MMP13). Med Sci Monit 2019; 25:7202-7208. [PMID: 31587013 PMCID: PMC6777377 DOI: 10.12659/msm.916886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Hypoxia promotes cancer progression. Hypoxia-inducible factor-1α (HIF-1α) has been reported to enhance tumor invasion and metastasis via activating downstream genes, such as matrix metalloproteinases (MMPs). The purpose of this study was to explore the probable roles of HIF-1α and MMP13 in the invasion and metastasis of ovarian cancer under hypoxic conditions. Material/Methods The expression of HIF-1α and MMP13 protein were detected with immunohistochemistry staining in ovarian cancer tissues, metastatic lesions, and normal fallopian tissues. Ovarian cancer A2780 cells were cultured under normoxic condition and hypoxic condition. mRNA and protein expression of HIF-1α and MMP13 were detected by RT-PCR and Western blot analysis. The effects of siRNA against HIF-1α on MMP13 expression were examined by RT-PCR and Western blot analysis. Transwell invasion assays were performed to test the invasive ability of A2780 cells. Results Immunohistochemistry staining showed significantly higher expression of HIF-1α and MMP13 protein in ovarian cancer tissues and metastatic lesions than in normal fallopian tissues. HIF-1α and MMP13 expression were closely related. After exposure to hypoxia, mRNA and protein levels of HIF-1α and MMP13 were upregulated. siRNA effectively inhibited HIF-1α expression and MMP13 expression. The number of invading A2780 cells decreased after HIF-1α was silenced. Conclusions This study suggests that HIF-1α promotes ovarian cancer cell invasion through a MMP13 mechanism. It might be an effective strategy targeting HIF-1α - MMP13 to inhibit invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Qingju Yang
- Department of Obstetrics and Gynecology, People's Hospital, Dezhou, Shandong, China (mainland)
| | - Xuanye Lian
- Qilu Medical Department, Shandong University, Jinan, Shandong, China (mainland)
| | - Ping Jiang
- Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong, China (mainland)
| | - Jing Cui
- Department of Pathology, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China (mainland).,Department of Pathology, ShanDong Provincial QianFoShan Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
9
|
Chon HS, Sehovic M, Marchion D, Walko C, Xiong Y, Extermann M. Biologic Mechanisms Linked to Prognosis in Ovarian Cancer that May Be Affected by Aging. J Cancer 2019; 10:2604-2618. [PMID: 31258768 PMCID: PMC6584919 DOI: 10.7150/jca.29611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
The increase of both life expectancy of the Western industrialized population and cancer incidence with aging is expected to result in a rapid expansion of the elderly cancer population, including patients with epithelial ovarian cancer (EOC). Although the survival of patients with EOC has generally improved over the past three decades, this progress has yet to provide benefits for elderly patients. Compared with young age, advanced age has been reported as an adverse prognostic factor influencing EOC. However, contradicting results have been obtained, and the mechanisms underlying this observation are poorly defined. Few papers have been published on the underlying biological mechanisms that might explain this prognosis trend. We provide an extensive review of mechanisms that have been linked to EOC prognosis and/or aging in the published literature and might underlie this relationship in humans.
Collapse
Affiliation(s)
- Hye Sook Chon
- Department of Gynecology Oncology, Moffitt Cancer Center and Research Institute, Tampa FL, USA
- University of South Florida, Tampa FL, USA
| | - Marina Sehovic
- Senior Adult Oncology Program, Moffitt Cancer Center and Research Institute, Tampa FL, USA
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Douglas Marchion
- Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Christine Walko
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Yin Xiong
- Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa FL, USA
| | - Martine Extermann
- Senior Adult Oncology Program, Moffitt Cancer Center and Research Institute, Tampa FL, USA
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa FL, USA
- University of South Florida, Tampa FL, USA
| |
Collapse
|
10
|
Rehman Z, Fahim A, Bhatti A, Sadia H, John P. Co-expression of HIF-1α, MDR1 and LAPTM4B in peripheral blood of solid tumors. PeerJ 2019; 7:e6309. [PMID: 30746305 PMCID: PMC6368972 DOI: 10.7717/peerj.6309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
The hypoxic tumor microenvironment is the major contributor of chemotherapy resistance in solid tumors. One of the key regulators of hypoxic responses within the cell is the hypoxia inducible factor-1α (HIF-1α) that is involved in transcription of genes promoting cell survival and chemotherapy resistance. Multidrug resistance gene-1 (MDR1) and Lysosome-associated protein transmembrane 4B-35 (LAPTM4B-35) are among those notable players which augment their responses to cellular hypoxia. MDR1 is the hypoxia responsive gene involved in multidrug resistance phenotype while LAPTM4B-35 is involved in chemotherapy resistance by stabilizing HIF-1α and overexpressing MDR1. Overexpression of HIF-1α, MDR1 and LAPTM4B has been associated with poor disease outcome in many cancers when studied individually at tissue level. However, accessibility of the tissues following the course of chemotherapy for ascertaining chemotherapy resistance is difficult and sometimes not clinically feasible. Therefore, indication of hypoxic biomarkers in patient’s blood can significantly alter the clinical outcome. Hence there is a need to identify a blood based marker to understand the disease progression. In the current study the expression of hypoxia associated chemotherapy resistance genes were studied in the peripheral blood lymphocytes of solid tumor patients and any potential correlation with disease progression were explored. The expression of HIF-1α, MDR1 and LAPTM4B was studied in blood of 72 breast, 42 ovarian, 32 colon and 21 prostate cancer patients through real time PCR analysis using delta cycle threshold method. The statistical scrutiny was executed through Fisher’s Exact test and the Spearman correlation method. There was 12–13 fold increased in expression of HIF-1α, two fold increased in MDR1 and 13–14 fold increased in LAPTM4B mRNA level in peripheral blood of breast, ovarian, prostate and colon cancer patients. In the current study there was an association of HIF-1α, MDR1 and LAPTM4B expression with advanced tumor stage, metastasis and chemotherapy treated group in breast, ovarian, prostate and colon cancer patients. The Spearman analysis also revealed a positive linear association among HIF-1α, MDR1 and LAPTM4B in all the studied cancer patients. The elevated expression of HIF-1α, MDR1 and LAPTM4B in peripheral blood of solid tumor patients can be a predictor of metastasis, disease progression and treatment response in these cancers. However, larger studies are needed to further strengthen their role as a potential biomarker for cancer prognosis.
Collapse
Affiliation(s)
- Zaira Rehman
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ammad Fahim
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hajra Sadia
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
11
|
van den Brand D, Mertens V, Massuger LF, Brock R. siRNA in ovarian cancer – Delivery strategies and targets for therapy. J Control Release 2018; 283:45-58. [DOI: 10.1016/j.jconrel.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
|
12
|
Ha JH, Ward JD, Radhakrishnan R, Jayaraman M, Song YS, Dhanasekaran DN. Lysophosphatidic acid stimulates epithelial to mesenchymal transition marker Slug/Snail2 in ovarian cancer cells via Gαi2, Src, and HIF1α signaling nexus. Oncotarget 2018; 7:37664-37679. [PMID: 27166196 PMCID: PMC5122340 DOI: 10.18632/oncotarget.9224] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies have identified a critical role for lysophosphatidic acid (LPA) in the progression of ovarian cancer. Using a transcription factor activation reporter array, which analyzes 45 distinct transcription factors, it has been observed that LPA observed robustly activates the transcription factor hypoxia-induced factor-1α (HIF1α) in SKOV3.ip ovarian cancer cells. HIF1α showed 150-fold increase in its activation profile compared to the untreated control. Validation of the array analysis indicated that LPA stimulates a rapid increase in the levels of HIF1α in ovarian cancer cells, with an observed maximum level of HIF1α-induction by 4 hours. Our report demonstrates that LPA stimulates the increase in HIF1α levels via Gαi2. Consistent with the role of HIF1α in epithelial to mesenchymal transition (EMT) of cancer cells, LPA stimulates EMT and associated invasive cell migration along with an increase in the expression levels N-cadherin and Slug/Snail2. Using the expression of Slug/Snail2 as a marker for EMT, we demonstrate that the inhibition of Gαi2, HIF1α or Src attenuates this response. In line with the established role of EMT in promoting invasive cell migration, our data demonstrates that the inhibition of HIF1α with the clinically used HIF1α inhibitor, PX-478, drastically attenuates LPA-stimulates invasive migration of SKOV3.ip cells. Thus, our present study demonstrates that LPA utilizes a Gαi2-mediated signaling pathway via Src kinase to stimulate an increase in HIF1α levels and downstream EMT-specific factors such as Slug, leading to invasive migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jeremy D Ward
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 2017; 7:10592. [PMID: 28878214 PMCID: PMC5587562 DOI: 10.1038/s41598-017-09244-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer have a poor overall survival rate in patients, and late disease presentation and chemoresistance are the main factors that lead to the mortality of ovarian cancer. Cancer stem cells (CSCs), a small subpopulation of cancer cells, have been associated with resistance to chemo- and radio-therapy in cancer treatment. Hypoxia is a common characteristic of many malignant tumors, and increased HIF-1α expression predicts the poor prognosis of ovarian cancer. In this study, we reported the relationship between hypoxia and cancer stem cells-like properties in human ovarian cancer cell lines SKOV3 and HO8910, we found that hypoxia induced cancer stem cells-like properties in ovarian cancer cells. Moreover, SIRT1 was found to be the downstream target gene of HIF-1α, which was involved in the promotion of cancer stem cells-like features in ovarian cancer cells by hypoxia, and NF-κB signaling pathway was involved in hypoxia-induced SIRT1 up-regulation. Our results hinted that HIF1α and SIRT1 might serve as potential therapeutic targets for ovarian cancer.
Collapse
|
14
|
Bilyk O, Coatham M, Jewer M, Postovit LM. Epithelial-to-Mesenchymal Transition in the Female Reproductive Tract: From Normal Functioning to Disease Pathology. Front Oncol 2017; 7:145. [PMID: 28725636 PMCID: PMC5497565 DOI: 10.3389/fonc.2017.00145] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital throughout the human lifespan. In addition to contributing to the development of various tissues within the growing embryo, EMT is also responsible for wound healing and tissue regeneration later in adulthood. In this review, we highlight the importance of EMT in the development and normal functioning of the female reproductive organs (the ovaries and the uterus) and describe how dysregulation of EMT can lead to pathological conditions, such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the current literature relating to EMT in the context of ovarian and endometrial carcinomas, with a particular focus on how molecular mechanisms and the tumor microenvironment can govern cancer cell plasticity, therapy resistance, and metastasis.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Mackenzie Coatham
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | |
Collapse
|
15
|
Andergassen U, Kölbl AC, Mumm JN, Mahner S, Jeschke U. Triple-negative breast cancer: New therapeutic options via signalling transduction cascades. Oncol Rep 2017; 37:3055-3060. [PMID: 28440460 DOI: 10.3892/or.2017.5512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer is a highly aggressive type of mammalian carcinoma. It is defined by a rather weak expression of estrogen-, progesterone- and Her2-receptor, and is thus difficult to treat, resulting in low disease-free and overall survival rates of the affected patients. Hence it is important to find new therapeutic options. To this aim we analysed the incidence of some molecules from different signal transduction cascades by immunohistochemistry, which are known to correlate with triple-negative breast cancer, and correlated the expression of these molecules to different tumour traits, such as size, grading, menopausal stage, histology, lymph node affection, remote metastasis formation, and to the incidence of local and lymph node recurrence and metastasis by statistical analysis. Statistically significant correlations were found for a number of tumour characteristics and signalling molecules: HIF1α is correlated to tumour grading, β-catenin to the menopausal state of the patient, and for Notch1 a relation to lymph node affection is seen. In terms of different recurrences, a correlation of β-catenin to metastasis formation and lymph node affection could be shown, as well as coherences between XBP1 and lymph node recurrence, Notch1 and metastasis formation and FOXP3 and the occurrence of local recurrence. The presented results are in accordance with formerly published studies and therefore might comprise opportunities to develop new therapeutical strategies, which could help to handle this aggressive form of breast cancer in a manner, by which side effects would be reduced and therapeutical efficiency is increased.
Collapse
Affiliation(s)
- Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Jan-Niclas Mumm
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| |
Collapse
|
16
|
Thirusangu P, Vigneshwaran V, Prashanth T, Vijay Avin BR, Malojirao VH, Rakesh H, Khanum SA, Mahmood R, Prabhakar BT. BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation. Angiogenesis 2016; 20:55-71. [PMID: 27743086 DOI: 10.1007/s10456-016-9528-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
Hypoxia is a feature of all solid tumours, contributing to tumour progression. Activation of HIF-1α plays a critical role in promoting tumour angiogenesis and metastasis. Since its expression is positively correlated with poor prognosis for cancer patients, HIF-1α is one of the most convincing anticancer targets. BP-1T is a novel antiproliferative agent with promising antiangiogenic effects. In the present study, the molecular mechanism underlying cytotoxic/antiangiogenic effects of BP-1T on tumour/non-tumour angiogenesis was evaluated. Evidences show that BP-1T exhibits potent cytotoxicity with prolonged activity and effectively regressed neovessel formation both in reliable non-tumour and tumour angiogenic models. The expression of CoCl2-induced HIF-1α was inhibited by BP-1T in various p53 (WT)-expressing cancer cells, including A549, MCF-7 and DLA, but not in mutant p53-expressing SCC-9 cells. Mechanistically, BP-1T mediates the HIF-1α proteasomal degradation by activating p53/MDM2 pathway and thereby downregulated HIF-1α-dependent angiogenic genes such as VEGF-A, Flt-1, MMP-2 and MMP-9 under hypoxic condition of in vitro and in vivo solid tumour, eventually leading to abolition of migration and invasion. Based on these observations, we conclude that BP-1T acts on HIF-1α degradation through p53/MDM2 proteasome pathway.
Collapse
Affiliation(s)
- Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - T Prashanth
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - H Rakesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College (Autonomous), University of Mysore, Mysore, Karnataka, 570 005, India
| | - Riaz Mahmood
- Postgraduate Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577203, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, 577203, India.
| |
Collapse
|
17
|
Ren HY, Zhang YH, Li HY, Xie T, Sun LL, Zhu T, Wang SD, Ye ZM. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis. Onco Targets Ther 2016; 9:1477-87. [PMID: 27042116 PMCID: PMC4798208 DOI: 10.2147/ott.s95490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) plays an important role in tumor progression and metastasis. A number of studies have investigated the association of HIF-1α with prognosis and clinicopathological characteristics of osteosarcoma but yielded inconsistent results. Method Systematic computerized searches were performed in PubMed, Embase, and Web of Science databases for relevant original articles. The pooled hazard ratios (HRs) and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated to assess the prognostic value of HIF-1α expression. The standard mean difference was used to analyze the continuous variable. Results Finally, nine studies comprising 486 patients were subjected to final analysis. Protein expression level of HIF-1α was found to be significantly related to overall survival (HR =3.0; 95% CI: 1.46–6.15), disease-free survival (HR =2.23; 95% CI: 1.26–3.92), pathologic grade (OR =21.33; 95% CI: 4.60–98.88), tumor stage (OR =10.29; 95% CI: 3.55–29.82), chemotherapy response (OR =9.68; 95% CI: 1.87–50.18), metastasis (OR =5.06; 95% CI: 2.87–8.92), and microvessel density (standard mean difference =2.83; 95% CI: 2.28–3.39). Conclusion This meta-analysis revealed that overexpression of HIF-1α is a predictive factor of poor outcomes for osteosarcoma. HIF-1α appeared to play an important role in prognostic evaluation and may be a potential target in antitumoral therapy.
Collapse
Affiliation(s)
- Hai-Yong Ren
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yin-Hua Zhang
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China; The First Department of Orthopaedics, Hospital of Zhejiang General Corps of Armed Police Forces, Jiaxing, People's Republic of China
| | - Heng-Yuan Li
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Xie
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ling-Ling Sun
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Zhu
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sheng-Dong Wang
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhao-Ming Ye
- Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|