1
|
Zhang T, Hu Y, Yang N, Yu S, Pu X. The microRNA-34 Family and Its Functional Role in Lung Cancer. Am J Clin Oncol 2024; 47:448-457. [PMID: 38700126 PMCID: PMC11340685 DOI: 10.1097/coc.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Lung cancer is one of the most common malignant tumors in humans and the leading cause of cancer-related deaths worldwide. The microRNA-34 (miR-34) family is dysregulated in various human cancers and is an important family of tumor suppressor genes among microRNAs. The miR-34 family is downregulated in lung cancer. It inhibits cell proliferation, metastasis, and invasion, arrests the cell cycle, and induces apoptosis or senescence by negatively regulating many oncogenes. It is commonly used to detect and treat lung cancer. This study describes the regulatory role of the miR-34 family in lung cancer and the associated research advances in treatment.
Collapse
Affiliation(s)
| | | | - Na Yang
- Department of Clinical Pharmacy, The Second People’s Hospital of Huaihua, Huaihua
| | - Shaofu Yu
- Department of Clinical Pharmacy, The Second People’s Hospital of Huaihua, Huaihua
| | - Xingxiang Pu
- The Second Department of Thoracic Medical Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| |
Collapse
|
2
|
Shi QQ, Huang YH, Li YF, Zhen SY, Li YH, Huang JY, Wang JY, Zhou XY. PEBP4 deficiency aggravates LPS-induced acute lung injury and alveolar fluid clearance impairment via modulating PI3K/AKT signaling pathway. Cell Mol Life Sci 2024; 81:133. [PMID: 38472560 DOI: 10.1007/s00018-024-05168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase β1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiao-Qing Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Science and Education, Jiangxi Chest Hospital, Nanchang, 330006, China
| | - Yong-Hong Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Yu-Fei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Shuang-Yan Zhen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yan-Hong Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jia-Yi Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330103, China
| | - Jia-Yang Wang
- School of Stomatology, Nanchang University, Nanchang, 330103, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China.
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
3
|
Molodtsova D, Guryev DV, Osipov AN. Composition of Conditioned Media from Radioresistant and Chemoresistant Cancer Cells Reveals miRNA and Other Secretory Factors Implicated in the Development of Resistance. Int J Mol Sci 2023; 24:16498. [PMID: 38003688 PMCID: PMC10671404 DOI: 10.3390/ijms242216498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Resistance to chemo- or radiotherapy is the main obstacle to consistent treatment outcomes in oncology patients. A deeper understanding of the mechanisms driving the development of resistance is required. This review focuses on secretory factors derived from chemo- and radioresistant cancer cells, cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), and cancer stem cells (CSCs) that mediate the development of resistance in unexposed cells. The first line of evidence considers the experiments with conditioned media (CM) from chemo- and radioresistant cells, CAFs, MSCs, and CSCs that elevate resistance upon the ionizing radiation or anti-cancer drug exposure of previously untreated cells. The composition of CM revealed factors such as circular RNAs; interleukins; plasminogen activator inhibitor; and oncosome-shuttled lncRNAs, mRNAs, and miRNAs that aid in cellular communication and transmit signals inducing the chemo- and radioresistance of sensitive cancer cells. Data, demonstrating that radioresistant cancer cells become resistant to anti-neoplastic drug exposure and vice versa, are also discussed. The mechanisms driving the development of cross-resistance between chemotherapy and radiotherapy are highlighted. The secretion of resistance-mediating factors to intercellular fluid and blood brings attention to its diagnostic potential. Highly stable serum miRNA candidates were proposed by several studies as prognostic markers of radioresistance; however, clinical studies are needed to validate their utility. The ability to predict a treatment response with the help of the miRNA resistance status database will help with the selection of an effective therapeutic strategy. The possibility of miRNA-based therapy is currently being investigated with ongoing clinical studies, and such approaches can be used to alleviate resistance in oncology patients.
Collapse
Affiliation(s)
- Daria Molodtsova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Denis V. Guryev
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Andreyan N. Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| |
Collapse
|
4
|
PEBP4 Directs the Malignant Behavior of Hepatocellular Carcinoma Cells via Regulating mTORC1 and mTORC2. Int J Mol Sci 2022; 23:ijms23158798. [PMID: 35955931 PMCID: PMC9369291 DOI: 10.3390/ijms23158798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphatidylethanolamine binding protein 4 (PEBP4) is an understudied multifunctional small protein. Previous studies have shown that the expression of PEBP4 is increased in many cancer specimens, which correlates to cancer progression. The present study explored the mechanism by which PEBP4 regulates the growth and progression of hepatocellular carcinoma cells. Thus, we showed that knockdown of PEBP4 in MHCC97H cells, where its expression was relatively high, diminished activities of serine/threonine protein kinase B (PKB, also known as Akt), mammalian target of rapamycin complex 1(mTORC1), and mTORC2, events that were not restored by insulin-like growth factor 1 (IGF-1). Conversely, overexpression of PEBP4 in MHCC97L cells with the low endogenous level yielded opposite effects. Furthermore, physical association of PEBP4 with Akt, mTORC1, and mTORC2 was observed. Interestingly, introduction of AktS473D mutant, bypassing phosphorylation by mTORC2, rescued mTORC1 activity, but without effects on mTORC2 signaling. In contrast, the effect of PEBP4 overexpression on the activity of mTORC1 but not that of mTORC2 was suppressed by MK2206, a specific inhibitor of Akt. In conjunction, PEBP4 knockdown-engendered reduction of cell proliferation, migration and invasion was partially rescued by Akt S473D while increases in these parameters induced by overexpression of PEBP4 were completely abolished by MK2206, although the expression of epithelial mesenchymal transition (EMT) markers appeared to be fully regulated by the active mutant of Akt. Finally, knockdown of PEBP4 diminished the growth of tumor and metastasis, whereas they were enhanced by overexpression of PEBP4. Altogether, our study suggests that increased expression of PEBP4 exacerbates malignant behaviors of hepatocellular cancer cells through cooperative participation of mTORC1 and mTORC2.
Collapse
|
5
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
6
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
7
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
8
|
Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X, Chen Z. Exosomes Derived From Macrophages Enhance Aerobic Glycolysis and Chemoresistance in Lung Cancer by Stabilizing c-Myc via the Inhibition of NEDD4L. Front Cell Dev Biol 2021; 8:620603. [PMID: 33748098 PMCID: PMC7969980 DOI: 10.3389/fcell.2020.620603] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 01/20/2023] Open
Abstract
As one of the most common and lethal cancer, lung cancer severely threatens the health of human. It has been reported that tumor-associated macrophages promote initiation, progression, as well as chemoresistance in human cancers. However, the underneath molecular mechanism that drives chemoresistance in lung cancer is yet not fully characterized. In this article, we demonstrated that M2 macrophage-derived exosomes (MDE) is the key factor to promote cisplatin-resistance in lung cancer. MDE exhibited high expression level of several miRNA including miR-3679-5p. Mechanistically, miR-3679-5p was delivered to lung cancer cells by MDE, downregulating the expression of a known E3 ligase, NEDD4L, which has been identified as a key regulator controlling the stability of c-Myc. Such decreased NEDD4L expression level resulted in the stabilization of c-Myc and elevated glycolysis. The enhanced glycolysis drives the chemoresistance in lung cancer. Taken together, our findings not only show that M2 macrophage induce chemoresistance in lung cancer through MDE mediated miR-3679-5R/NEDD4L/c-Myc signaling cascade, but also shed the light on the mechanism of the cross-talk between M2 macrophage and lung cancers. By pinpointing a potential novel survival signaling pathway, our data could provide a new potential therapeutic target for lung cancer treatment and management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Lie Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Haiyan Pan
- Department of Internal Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Yaona Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Miao Shi
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Hang Yu
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Chaoye Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Xinfu Pan
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| | - Zhijun Chen
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| |
Collapse
|
9
|
Liu X, Jia Y, Shi C, Kong D, Wu Y, Zhang T, Wei A, Wang D. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma. PLoS One 2021; 16:e0247020. [PMID: 33592039 PMCID: PMC7886130 DOI: 10.1371/journal.pone.0247020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/31/2021] [Indexed: 01/14/2023] Open
Abstract
CYP4B1 belongs to the mammalian CYP4 enzyme family and is predominantly expressed in the lungs of humans. It is responsible for the oxidative metabolism of a wide range of endogenous compounds and xenobiotics. In this study, using data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database, a secondary analysis was performed to explore the expression profile of CYP4B1, as well as its prognostic value in patients with lung adenocarcinoma (LUAD). Based on the obtained results, a significantly decreased CYP4B1 expression was discovered in patients with LUAD when compared with their normal counterparts (p<0.05), and was linked to age younger than 65 years (p = 0.0041), history of pharmaceutical (p = 0.0127) and radiation (p = 0.0340) therapy, mutations in KRAS/EGFR/ALK (p = 0.0239), and living status of dead (p = 0.0026). Survival analysis indicated that the low CYP4B1 expression was an independent prognostic indicator of shorter survival in terms of overall survival (OS) and recurrence-free survival (RFS) in patients with LUAD. The copy number alterations (CNAs) and sites of cg23440155 and cg23414387 hypermethylation might contribute to the decreased CYP4B1 expression. Gene set enrichment analysis (GSEA) suggested that CYP4B1 might act as an oncogene in LUAD by preventing biological metabolism pathways of exogenous and endogenous compounds and enhancing DNA replication and cell cycle activities. In conclusion, CYP4B1 expression may serve as a valuable independent prognostic biomarker and a potential therapeutic target in patients with LUAD.
Collapse
Affiliation(s)
- Xiaoling Liu
- College of Basic Medicine, Jining Medical University, Jining City, China
| | - Yichen Jia
- Institute of Medical Technology, Qiqihar Medical University, Qiqihar City, China
| | - Changyuan Shi
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, China
| | - Dechen Kong
- College of Basic Medicine, Jining Medical University, Jining City, China
| | - Yuanming Wu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, China
| | - Tiantian Zhang
- College of Basic Medicine, Jining Medical University, Jining City, China
| | - Anjie Wei
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, China
| | - Dan Wang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, China
- * E-mail:
| |
Collapse
|
10
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
11
|
Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol 2021; 189:114409. [PMID: 33428895 DOI: 10.1016/j.bcp.2021.114409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-coding, conserved, single-stranded nucleotide sequences involved in physiological and developmental processes. Recent evidence suggests an association between miRNAs' deregulation with initiation, promotion, progression, and drug resistance in cancer cells. Besides, miRNAs are known to regulate the epithelial-mesenchymal transition, angiogenesis, autophagy, and senescence in different cancer types. Previous reports proposed that apart from the antioxidant potential, flavonoids play an essential role in miRNAs modulation associated with changes in cancer-related proteins, tumor suppressor genes, and oncogenes. Thus, flavonoids can suppress proliferation, help in the development of drug sensitivity, suppress metastasis and angiogenesis by modulating miRNAs expression. In the present review, we summarize the role of miRNAs in cancer, drug resistance, and the chemopreventive potential of flavonoids mediated by miRNAs. The potential of flavonoids to modulate miRNAs expression in different cancer types demonstrate their selectivity and importance as regulators of carcinogenesis. Flavonoids as chemopreventive agents targeting miRNAs are extensively studied in vitro, in vivo, and pre-clinical studies, but their efficiency in targeting miRNAs in clinical studies is less investigated. The evidence presented in this review highlights the potential of flavonoids in cancer prevention/treatment by regulating miRNAs, although further investigations are required to validate and establish their clinical usefulness.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Waseem Raza
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Jawahar Lal Nehru University, New Delhi 110067, India
| | - Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Naghizadeh S, Mohammadi A, Duijf PHG, Baradaran B, Safarzadeh E, Cho WCS, Mansoori B. The role of miR-34 in cancer drug resistance. J Cell Physiol 2020; 235:6424-6440. [PMID: 32064620 DOI: 10.1002/jcp.29640] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Resistance to conventional chemotherapy remains a major cause of cancer relapse and cancer-related deaths. Therefore, there is an urgent need to overcome resistance barriers. To improve cancer treatment approaches, it is critical to elucidate the basic mechanisms underlying drug resistance. Increasingly, the mechanisms involving micro-RNAs (miRNAs) are studied because miRNAs are also considered practical therapeutic options due to high degrees of specificity, efficacy, and accuracy, as well as their ability to target multiple genes at the same time. Years of research have firmly established miR-34 as a key tumor suppressor miRNA whose target genes are involved in drug resistance mechanisms. Indeed, numerous articles show that low levels of circulating miR-34 or tumor-specific miR-34 expression are associated with poor response to chemotherapy. In addition, elevation of inherently low miR-34 levels in resistant cancer cells effectively restores sensitivity to chemotherapeutic agents. Here, we review this literature, also highlighting some contradictory observations. In addition, we discuss the potential utility of miR-34 expression as a predictive biomarker for chemotherapeutic drug response. Although caution needs to be exercised, miR-34 is emerging as a biomarker that could improve cancer precision medicine.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett 2020; 469:266-276. [DOI: 10.1016/j.canlet.2019.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
|
14
|
Petrek H, Yu A. MicroRNAs in non-small cell lung cancer: Gene regulation, impact on cancer cellular processes, and therapeutic potential. Pharmacol Res Perspect 2019; 7:e00528. [PMID: 31859460 PMCID: PMC6923806 DOI: 10.1002/prp2.528] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022] Open
Abstract
Lung cancer remains the most lethal cancer among men and women in the United States and worldwide. The majority of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Developing new therapeutics on the basis of better understanding of NSCLC biology is critical to improve the treatment of NSCLC. MicroRNAs (miRNAs or miRs) are a superfamily of genome-derived, small noncoding RNAs that govern posttranscriptional gene expression in cells. Functional miRNAs are commonly dysregulated in NSCLC, caused by genomic deletion, methylation, or altered processing, which may lead to the changes of many cancer-related pathways and processes, such as growth and death signaling, metabolism, angiogenesis, cell cycle, and epithelial to mesenchymal transition, as well as sensitivity to current therapies. With the understanding of miRNA biology in NSCLC, there are growing interests in developing new therapeutic strategies, namely restoration of tumor suppressive miRNAs and inhibition of tumor promotive miRNAs, to combat against NSCLC. In this article, we provide an overview on the molecular features of NSCLC and current treatment options with a focus on pharmacotherapy and personalized medicine. By illustrating the roles of miRNAs in the control of NSCLC tumorigenesis and progression, we highlight the latest efforts in assessing miRNA-based therapies in animal models and discuss some critical challenges in developing RNA therapeutics.
Collapse
Affiliation(s)
- Hannah Petrek
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| | - Ai‐Ming Yu
- Department of Biochemistry & Molecular MedicineUC Davis School of MedicineSacramentoCAUSA
| |
Collapse
|
15
|
Luo ZK, Chen QF, Qu X, Zhou XY. The Roles And Signaling Pathways Of Phosphatidylethanolamine-Binding Protein 4 In Tumors. Onco Targets Ther 2019; 12:7685-7690. [PMID: 31571919 PMCID: PMC6755245 DOI: 10.2147/ott.s216161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
Phosphatidylethanolamine-binding protein 4 (PEBP4) has been found to be highly expressed in many tumors and to be closely related to the proliferation, differentiation, and metastasis of tumors. PEBP4 has also been found to be involved in many cancer-activated signaling pathways and to cause therapeutic resistance. In this study, we first reviewed the morphological structure and expression of PEBP4, then discussed the roles of PEBP4 in individualized treatment of some cancers, and finally explored the possibilities of cultivating PEBP4 as a therapeutic target.We also identified the main signaling pathways in which PEBP4 affects different cancers. It is here concluded that over-expression of PEBP4 can enhance the proliferation and metastasis of the cancer cells and the resistance to radiotherapy/chemotherapy in cancers.
Collapse
Affiliation(s)
- Zi-Kang Luo
- Department of Clinical Medical, The Second Clinical Medical College, Nanchang University, Nanchang 330006, People's Republic of China
| | - Qiong-Feng Chen
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xiaoqin Qu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
16
|
The Roles of MicroRNA in Lung Cancer. Int J Mol Sci 2019; 20:ijms20071611. [PMID: 30935143 PMCID: PMC6480472 DOI: 10.3390/ijms20071611] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Collapse
|
17
|
The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019; 11:25. [PMID: 30744689 PMCID: PMC6371621 DOI: 10.1186/s13148-018-0587-8] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
Collapse
|
18
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
19
|
Lu J, Zhan Y, Feng J, Luo J, Fan S. MicroRNAs associated with therapy of non-small cell lung cancer. Int J Biol Sci 2018; 14:390-397. [PMID: 29725260 PMCID: PMC5930471 DOI: 10.7150/ijbs.22243] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022] Open
Abstract
Background & Objective: The incidence of non-small cell lung cancer (NSCLC) has been rising over the past several decades. Despite various therapeutic regimens and modern diagnostic techniques are developed, NSCLC still have an extremely poor prognosis due to drug resistance. Therefore, it is critical to find a novel precise diagnosis and effective treatment approach for NSCLC patients. MicroRNAs (MiRNAs) are a class of 18-25nt non-coding small RNAs, which have been shown to be involved profoundly in the pathogenesis such as cellular proliferation, differentiation, development, apoptosis and tumorigenesis in many human tumors including of NSCLC. We reviewed existing research literature regarding correlations between miRNAs and their target's response to anticancer treatment, and summarized the recent findings between miRNAs and therapy availability in NSCLC.
Collapse
Affiliation(s)
- Junmi Lu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Feng
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Zang H, Peng J, Wang W, Fan S. Roles of microRNAs in the resistance to platinum based chemotherapy in the non-small cell lung cancer. J Cancer 2017; 8:3856-3861. [PMID: 29151973 PMCID: PMC5688939 DOI: 10.7150/jca.21267] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022] Open
Abstract
Platinum-based adjuvant chemotherapy improves survival among patients with lung tumors, in particular non-small cell lung cancer (NSCLC). But the predicament of drug resistance in NSCLC patients is frustrating us. The profiles of microRNAs are different between platinum chemotherapy resistant and sensitive NSCLC cells. Researches regarding microRNAs and their targets, in platinum drug resistant cases, illuminate novel ideals for platinum-based chemotherapy for NSCLC patients. Therefore, in this review we will focus on three aspects: Epithelial-mesenchymal transition (EMT), cell proliferation and apoptosis, and the roles of microRNAs in cisplatin (CDDP) and carboplatin (CBP) resistance.
Collapse
Affiliation(s)
- Hongjing Zang
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Jianlun Peng
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410011, China
| | - Weiyuan Wang
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
22
|
Wu Z, Liu B, Zheng X, Hou H, Li Y. Role of the PEBP4 protein in the development and metastasis of gastric cancer. Oncotarget 2017; 8:18177-18184. [PMID: 28193908 PMCID: PMC5392317 DOI: 10.18632/oncotarget.15255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylethanolamine-binding protein 4 (PEBP4) has previously been reported to be upregulated in various cancers. However, the physiological functions of PEBP4 in gastric cancer are still unknown. Aiming to clarify the properties and role of PEBP4 in the development and invasion of gastric cancer, we performed several biological assays and a knockdown assay. The expression level of PEBP4 was shown to be significantly upregulated in gastric cancer tissue samples, and knockdown of the expression of PEBP4 induced significant inhibitory effects on cell proliferation, migration and invasiveness. In addition, it was demonstrated that PEBP4 was associated with the development and invasion of gastric cancer cells through activation of the PI3K/Akt signaling pathway. Our findings supported the hypothesis that PEBP4 might be a novel potential drug target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Bin Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuemin Zheng
- Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Huijing Hou
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Wang SC, Zhou F, Zhou ZY, Hu Z, Chang L, Ma MD. Knockdown of PEBP4 suppresses proliferation, migration and invasion of human breast cancer cells. Biomed Pharmacother 2017; 90:659-664. [DOI: 10.1016/j.biopha.2017.03.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 01/31/2023] Open
|
24
|
Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Noncoding RNA Res 2017; 2:1-17. [PMID: 30159416 PMCID: PMC6096430 DOI: 10.1016/j.ncrna.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Platinum(II) complexes such as cisplatin, carboplatin and oxaliplatin are clinically approved for the therapy of various solid tumors. Challenging pathogenic properties of cancer cells and the response of cancers towards platinum-based drugs are strongly influenced by non-coding small RNA molecules, the microRNAs (miRNAs). Both increased platinum activity and formation of tumor resistance towards platinum drugs are controlled by miRNAs. This review gives an overview of the interactions between platinum-based drugs and miRNAs, and their influence on platinum activity in various cancer types is discussed.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Anticancer drugs
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DACH, 1,2-diaminocyclohexane
- DDP, cisplatin
- EGCG, (−)-epigallocatechin-3-gallate
- EOX, epirubicin/oxaliplatin/xeloda
- FOLFOX, folinate/5-FU/oxaliplatin
- GC, gemcitabine/cisplatin, gastric cancer
- LNA, locked nucleic acid
- MVAC, methotrexate/vinblastine/adriamycin/cisplatin
- MicroRNA
- Oxaliplatin
- Platinum complexes
- XELOX, xeloda/oxaliplatin
- dTTP, deoxythymidine triphosphate
Collapse
|
25
|
PEBP4 silencing inhibits hypoxia-induced epithelial-to-mesenchymal transition in prostate cancer cells. Biomed Pharmacother 2016; 81:1-6. [DOI: 10.1016/j.biopha.2016.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 01/19/2023] Open
|
26
|
He H, Liu D, Lin H, Jiang S, Ying Y, Chun S, Deng H, Zaia J, Wen R, Luo Z. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein and has multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1682-9. [PMID: 27033522 DOI: 10.1016/j.bbamcr.2016.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022]
Abstract
Phosphatidylethanolamine binding proteins (PEBP) represent a superfamily of proteins that are conserved from bacteria to humans. In mammals, four members have been identified, PEBP1-4. To determine the functional differences among PEBP1-4 and the underlying mechanism for their actions, we performed a sequence alignment and found that PEBP4 contains a signal peptide and potential glycosylation sites, whereas PEBP1-3 are intracellular proteins. To test if PEBP4 is secreted, we made constructs with Myc epitope at the amino (N) terminus or carboxyl (C) terminus to mask the signal sequence or keep it free, respectively. Our data revealed that both mouse and human PEBP4 were secreted when the epitope was tagged at their C-terminus. To our surprise, secretion was dependent upon the C-terminal conserved domain in addition to the N-terminal signal sequence. When the epitope was placed to the N-terminus, the recombinant protein failed to secrete and instead, was retained in the cytoplasm. Mass spectrometry detected asparagine (N)-glycosylation on the secreted PEBP4. Although overexpression of N-terminal tagged PEBP4 resulted in an inhibition of ERK activation by EGF, that with a C-terminal epitope tag did not have such an effect. Likewise, transfection of PEBP4 shRNA did not appear to affect ERK activation, suggesting that PEBP4 does not participate in the regulation of this pathway. In contrast, PEBP4 siRNA suppressed phosphorylation of Act at S473. Therefore, our results suggest that PEBP4 is a multifunctional protein and can be secreted. It will be important to investigate the mechanism by which PEBP4 is secreted and regulates cellular events.
Collapse
Affiliation(s)
- Huan He
- Graduate Program of Internal Medicine, Nanchang University Jiangxi Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Dan Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pharmacology, Nanchang University School of Pharmaceutic Sciences, Nanchang, China
| | - Hui Lin
- Graduate Program of Internal Medicine, Nanchang University Jiangxi Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Shanshan Jiang
- Graduate Program of Internal Medicine, Nanchang University Jiangxi Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pharmacology, Nanchang University School of Pharmaceutic Sciences, Nanchang, China
| | - Ying Ying
- Graduate Program of Internal Medicine, Nanchang University Jiangxi Medical College, Nanchang, China; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pathology, Institute of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Shao Chun
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller Medical School, Miami, FL 33136, United States
| | - Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pathology, Institute of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China.
| |
Collapse
|
27
|
Yu G, Huang B, Chen G, Mi Y. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis. J Thorac Dis 2015; 7:1806-16. [PMID: 26623104 PMCID: PMC4635298 DOI: 10.3978/j.issn.2072-1439.2015.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND While phosphatidylethanolamine-binding protein 4 (PEBP4) is a key factor in the malignant proliferation and metastasis of tumor cells, the exact regulatory network governing its roles remains unclear. This study was designed to investigate the effect of PEBP4 on PI3K/Akt/mTOR pathway and explore its molecular network that governs the proliferation and metastasis of tumor cells. METHODS After the recombinant plasmid pcDNA3.1-PEBP4 was constructed, the recombinant plasmid pcDNA3.1-PEBP4 and PEBP4-targeting siRNA were transfected into lung cancer HCC827 cell line. The expressions of PI3K/Akt/mTOR pathway components in HCC827 cells in each group were determined using Western blotting. In the HCC827 cells, the effect of PI3K pathway inhibitor LY294002 on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of LY294002 on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Furthermore, the effect of mTOR inhibitor rapamycin (RAPA) on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of RAPA on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. RESULTS As shown by Western blotting, the protein expressions of p-Akt and phosphorylated mTOR (p-mTOR) were significantly higher in the pcDNA3.1-PEBP4-transfected group than in the normal control group and PEBP4 siRNA group (P<0.05); furthermore, the protein expressions of p-Akt and p-mTOR significantly decreased in the PEBP4 targeting siRNA-transfected group (P<0.05). Treatment with LY294002 significantly inhibited the protein expressions of p-Akt and p-mTOR in HCC827 cells (P<0.05). In contrast, treatment with RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). CONCLUSIONS The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Guoqiang Chen
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Yedong Mi
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| |
Collapse
|
28
|
RBMMMDA: predicting multiple types of disease-microRNA associations. Sci Rep 2015; 5:13877. [PMID: 26347258 PMCID: PMC4561957 DOI: 10.1038/srep13877] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidences have shown that plenty of miRNAs play fundamental and important roles in various biological processes and the deregulations of miRNAs are associated with a broad range of human diseases. However, the mechanisms underlying the dysregulations of miRNAs still have not been fully understood yet. All the previous computational approaches can only predict binary associations between diseases and miRNAs. Predicting multiple types of disease-miRNA associations can further broaden our understanding about the molecular basis of diseases in the level of miRNAs. In this study, the model of Restricted Boltzmann machine for multiple types of miRNA-disease association prediction (RBMMMDA) was developed to predict four different types of miRNA-disease associations. Based on this model, we could obtain not only new miRNA-disease associations, but also corresponding association types. To our knowledge, RBMMMDA is the first model which could computationally infer association types of miRNA-disease pairs. Leave-one-out cross validation was implemented for RBMMMDA and the AUC of 0.8606 demonstrated the reliable and effective performance of RBMMMDA. In the case studies about lung cancer, breast cancer, and global prediction for all the diseases simultaneously, 50, 42, and 45 out of top 100 predicted miRNA-disease association types were confirmed by recent biological experimental literatures, respectively.
Collapse
|
29
|
Zhang D, Dai Y, Cai Y, Suo T, Liu H, Wang Y, Cheng Z, Liu H. PEBP4 promoted the growth and migration of cancer cells in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 37:1699-705. [PMID: 26311050 DOI: 10.1007/s13277-015-3906-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignancies in the world. Numerous studies have linked the activation of AKT to the progression of PDAC. Phosphatidylethanolamine-binding protein 4 (PEBP4) has been reported to be upregulated in various cancer types. However, its expression pattern and biological functions in PDAC are unknown. In this study, it was found that the messenger RNA (mRNA) and protein level of PEBP4 was elevated in PDAC samples. Forced expression of PEBP4 in PDAC cell lines promoted cell growth and migration, while downregulation of PEBP4 in PDAC cells by RNA interference (RNAi) inhibited the growth, migration, and metastasis of the cancer cells. PEBP4 interacted with AKT and promoted the phosphorylation of serine 473 in AKT. Collectively, this study suggested that PEBP4 might promote the progression of PDAC through activating AKT signaling and PEBP4 might be a promising therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Dexiang Zhang
- General Surgery Department, The Fifth People's Hospital of Shanghai, Fudan University, 128 Ruili Rd., Shanghai, 200240, China
| | - Yuedi Dai
- Department of Medical Oncology, Cancer Hospital of Fudan University, Minhang Branch, Shanghai, 200240, China
| | - Yuankun Cai
- General Surgery Department, The Fifth People's Hospital of Shanghai, Fudan University, 128 Ruili Rd., Shanghai, 200240, China
| | - Tao Suo
- General Surgery Department, General Surgery Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Han Liu
- General Surgery Department, General Surgery Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Yueqi Wang
- General Surgery Department, General Surgery Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Zhijian Cheng
- General Surgery Department, The Fifth People's Hospital of Shanghai, Fudan University, 128 Ruili Rd., Shanghai, 200240, China.
| | - Houbao Liu
- General Surgery Department, General Surgery Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| |
Collapse
|