1
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
2
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Liu XW, Hong MJ, Qu YY. Study on the Relationship Between PTPRO Methylation in Plasma and Efficacy Neoadjuvant Chemotherapy in Patients with Early Breast Cancer. Int J Womens Health 2023; 15:1673-1680. [PMID: 37937223 PMCID: PMC10627070 DOI: 10.2147/ijwh.s428038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Objective This study aimed to explore the correlation between PTPRO methylation in plasma and the efficacy of neoadjuvant chemotherapy (NAC) for early breast cancer (BC). Methods Eighty-two patients with early BC undergoing NAC were included. PTPRO methylation status in plasma before and after NAC was detected using methylation-specific PCR and the relationship between PTPRO methylation and NAC efficacy was analyzed. Results The rate of pathologic complete response (pCR) was only 25.0% (12/48) in patients with positive PTPRO methylation result before NAC, but 61 0.8% (21/34) in pre-NAC methylation-negative patients (OR = 0.24, 95% CI: 0.09-0.65, P = 0.005). In addition, the pCR rate was 12.1% (4/33) in patients with positive PTPRO methylation results both before and after NAC, but 53.3% (8/15) in patients with pre-NAC positive methylation and post-NAC negative methylation results (OR = 0.12, 95% CI: 0.03-0.52, P = 0.004). Conclusion Plasma PTPRO methylation is a potential biomarker for predicting the efficacy of NAC in early BC.
Collapse
Affiliation(s)
- Xiang-Wei Liu
- Department of Breast Surgery, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Mei-Juan Hong
- Ultrasound Diagnosis and Treatment Center, The First People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| | - Yan-Yu Qu
- Departmentof Pathology, The Second People’s Hospital of Foshan, Foshan, 528000, People’s Republic of China
| |
Collapse
|
4
|
Yang K, Gao L, Hao H, Yu L. Identification of a novel gene signature for the prognosis of sepsis. Comput Biol Med 2023; 159:106958. [PMID: 37087781 DOI: 10.1016/j.compbiomed.2023.106958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection, and its pathogenesis is still unclear. In view of the complex pathological process of sepsis, finding suitable biomarkers is helpful for the research and treatment of sepsis. This study determined the potential prognostic markers of sepsis by analyzing the molecular characteristics of patients with sepsis. During this study, bioinformatics analysis was conducted on the RNA sequencing data and DNA methylation sites from the public database to determine the prognostic genes related to sepsis, and a 9-gene prognostic signature for sepsis was constructed. According to the risk score, all sepsis samples were divided into two groups. Then, the prediction effect of the 9-gene signature was verified in two cohorts, and the association between these genes and sepsis was further revealed through immune infiltration analysis, gene set enrichment analysis and the relationship between clinical phenotype and survival rate. Our study provided a reliable prognostic signature for sepsis. The signature could predict the survival of patients with sepsis and serve as a predictor.
Collapse
Affiliation(s)
- Kai Yang
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - HongXia Hao
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
5
|
Huan Z, Tang Y, Xu C, Cai J, Yao H, Wang Y, Bu F, Ge X. PTPRO knockdown protects against inflammation in hemorrhage shock-induced lung injury involving the NF-κB signaling pathway. Respir Res 2022; 23:195. [PMID: 35906634 PMCID: PMC9335982 DOI: 10.1186/s12931-022-02118-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hemorrhage shock (HS) is characterized by decreased tissue oxygenation and organ damage due to severe blood loss. Protein tyrosine phosphatase receptor type O (PTPRO) is abnormally up-regulated in the rat lungs after trauma/HS. Methods To elucidate the regulatory mechanism of PTPRO in lung inflammation following HS, we established a rat model of HS via withdrawing blood by a catheter inserted into the femoral artery followed by resuscitation. The rats were infected with lentivirus harboring short hairpin RNA (shRNA) targeting PTPRO by intratracheal instillation. Results PTPRO was significantly up-regulated in rat lungs after HS. PTPRO knockdown enhanced epithelial integrity and reduced capillary leakage by up-regulating tight junction proteins zonula occludens-1 (ZO-1) and occludin (OCC) in the lungs. Besides, HS-induced myeloperoxidase activity and inflammatory cell infiltration was mitigated by PTPRO knockdown. The expression of inflammatory cytokines/chemokines (TNF-α, IL-6, MIP-2, MCP-1, and KC) in the lungs and bronchoalveolar lavage fluid was regressed after PTPRO knockdown. The nuclear factor kappa B (NF-κB) pathway was involved in HS-induced lung inflammation. PTPRO down-regulation inhibited the NF-κB pathway activation by suppressing the phosphorylation of NF-κB and its translocation from the cytoplasm into the nucleus in HS. Conclusion Taken together, we demonstrated that PTPRO knockdown may contribute to attenuating inflammation in HS-induced lung injury via inhibiting NF-κB pathway activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02118-2.
Collapse
Affiliation(s)
- Zhirong Huan
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Ying Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ce Xu
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Jimin Cai
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Hao Yao
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Yan Wang
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Fanyu Bu
- Department of Reconstruction Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China.
| | - Xin Ge
- Department of ICU, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, 214000, People's Republic of China. .,Orthopedic Institution of Wuxi City, Wuxi, 214000, Jiangsu, China. .,Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants (Basel) 2022; 11:antiox11050802. [PMID: 35624665 PMCID: PMC9137810 DOI: 10.3390/antiox11050802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is the main pathophysiological mechanism involved in several chronic diseases, including asthma. Fluorescent oxidation products (FlOPs), a global biomarker of damage due to OS, is of growing interest in epidemiological studies. We conducted a genome-wide association study (GWAS) of the FlOPs level in 1216 adults from the case-control and family-based EGEA study (mean age 43 years old, 51% women, and 23% current smokers) to identify genetic variants associated with FlOPs. The GWAS was first conducted in the whole sample and then stratified according to smoking status, the main exogenous source of reactive oxygen species. Among the top genetic variants identified by the three GWAS, those located in BMP6 (p = 3 × 10−6), near BMPER (p = 9 × 10−6), in GABRG3 (p = 4 × 10−7), and near ATG5 (p = 2 × 10−9) are the most relevant because of both their link to biological pathways related to OS and their association with several chronic diseases for which the role of OS in their pathophysiology has been pointed out. BMP6 and BMPER are of particular interest due to their involvement in the same biological pathways related to OS and their functional interaction. To conclude, this study, which is the first GWAS of FlOPs, provides new insights into the pathophysiology of chronic OS-related diseases.
Collapse
|
7
|
Hao M, Guo M, Yan R. Protein tyrosine phosphatase receptor-type O expression as a prognostic marker in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A prospective study. Exp Ther Med 2021; 21:435. [PMID: 33777188 PMCID: PMC7967798 DOI: 10.3892/etm.2021.9852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Optimal clinical indicators are crucial for evaluating the prognosis of patients with acute coronary syndrome (ACS). In the present study, the potential prognostic value of protein tyrosine phosphatase receptor-type O (PTPRO) expression in the peripheral blood mononuclear cells of patients with ACS undergoing percutaneous coronary intervention (PCI) was investigated. Patients diagnosed with ACS were prospectively recruited, and PTPRO expression in mononuclear cells separated from peripheral blood was assessed by western blotting. The prognosis was judged by the occurrence of major adverse cardiovascular events. Cox regression analyses were performed to assess the association between PTPRO expression and prognosis. In the enrolled 185 patients with ACS, PTPRO expression was lower after PCI compared with that before PCI (P<0.05). Although the pre-PCI PTPRO expression did not differ significantly between the good and poor prognosis groups, PTPRO expression after PCI was significantly lower in the good prognosis group compared with the poor prognosis group (P<0.05). The area under the receiver operating characteristic curve for the prognostic value of post-PCI PTPRO expression was significantly greater than that for pre-PCI PTPRO expression (P<0.05). Cox regression analysis identified high post-PCI PTPRO expression as an independent risk factor for poor prognosis in patients with ACS (P<0.05), and further analysis indicated that the post-PCI PTPRO expression level was associated with the prognosis of patients with ACS (P<0.05). PTPRO expression in peripheral blood mononuclear cells after PCI is associated with the prognosis of patients with ACS, with high PTPRO expression indicating a high risk of poor prognosis in patients with ACS.
Collapse
Affiliation(s)
- Minghui Hao
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| | - Ming Guo
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| | - Rui Yan
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University of Medical Sciences, Beijing 101100, P.R. China
| |
Collapse
|
8
|
Zhao J, Yan S, Zhu X, Bai W, Li J, Liang C. PTPRO exaggerates inflammation in ulcerative colitis through TLR4/NF-κB pathway. J Cell Biochem 2019; 121:1061-1071. [PMID: 31452237 DOI: 10.1002/jcb.29343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Previous studies have implicated protein tyrosine phosphatase receptor type O (PTPRO) as a key regulator in inflammation-associated diseases; however, its role in ulcerative colitis (UC) remains largely unknown. Thus, we aim to elucidate the potential role and underlying mechanism of PTPRO in UC. In this study, increased expression of PTPRO, toll-like receptor (TLR4) and inflammatory cytokines were observed in mucosal tissues (MTs) from inflamed areas and lamina propria mononuclear cells (LPMCs) of patients with UC compared with those from healthy controls. Then, it was manifested that PTPRO promoted the expression of TLR4 and proinflammatory cytokines in lipopolysaccharide-induced (LPS-induced) inflammatory macrophage model. Besides, PTPRO inhibited the proliferation of intestinal epithelial cells (IECs) but enhanced the apoptosis of IECs in macrophages. Moreover, levels of phosphorylated nuclear factor κB (NF-κB)/p65 and inhibitor of NF-κB α (IκBα) were more significantly increased in PTPRO overexpressed macrophages. In addition, the area under receiver operating characteristic curve was 0.807 (95%CI = 0.686-0.958, P < .001) suggesting PTPRO as an ideal diagnostic marker for UC. Taken these, the present study shows strong evidence that PTPRO exaggerates inflammation in UC via TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China.,Liver Transplantation Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xianlan Zhu
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenxia Bai
- Department of Gastroenterology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Caihong Liang
- Department of Cardiovasology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Xu Y, Li J, Wang P, Zhang Z, Wang X. LncRNA HULC promotes lung squamous cell carcinoma by regulating PTPRO via NF-κB. J Cell Biochem 2019; 120:19415-19421. [PMID: 31448453 DOI: 10.1002/jcb.29119] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Accumulating studies have implicated that long noncoding RNA (lncRNA) plays a vital role in lung cancer. However, little is known of the role of lncRNA highly upregulated in liver cancer (HULC) in the pathogenesis of lung squamous cell carcinoma (LSCC). In this study, we investigated the modifying effects and underlying mechanisms of lncRNA HULC in LSCC. Significantly decreased level of lncRNA HULC was observed in LSCC samples compared with adjacent tissues. Besides, the expression of lncRNA HULC was negatively associated with protein tyrosine phosphatase receptor type O (PTPRO) in LSCC. Moreover, lncRNA HULC could promote the proliferation of LSCC cells by downregulating the expression PTPRO dependent on the phosphorylation and activation of nuclear factor-κB (NF-κB). The present study firstly shows strong evidence supporting a critical role of lncRNA HULC in promoting LSCC by regulating PTPRO/NF-κB signaling pathway, which provides new promising biomarkers for LSCC.
Collapse
Affiliation(s)
- Yang Xu
- National Center of Occupational Safety and Health, NHC, Beijing, China
| | - Jingyun Li
- National Center of Occupational Safety and Health, NHC, Beijing, China
| | - Pingping Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Zhenliang Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuetao Wang
- National Center of Occupational Safety and Health, NHC, Beijing, China
| |
Collapse
|
10
|
Wang Y, Zheng F, Gao G, Yan S, Zhang L, Wang L, Cai X, Wang X, Xu D, Wang J. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis. J Cell Biochem 2019; 120:1133-1140. [PMID: 29315763 DOI: 10.1002/jcb.26659] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
Currently published studies have implicated that microRNAs (miRNAs) including exosomes-encapsulated miRNAs play a critical role in rheumatoid arthritis (RA). Previously, we have found that exosomes-encapsulated miR-548a-3p was significantly decreased in serum samples from RA patients by miRNAs microarray analysis. However, little is known of the role of miR-548a-3p in the development and progression of RA. In this study, we aim to investigate the underlying molecular mechanisms of miR-548a-3p in RA, which will provide new insight into understanding the pathogenesis of RA and identifying novel therapeutics targets for this disease. As validated by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of miR-548a-3p in serum exosomes and peripheral blood mononuclear cells (PBMCs) of RA patients (n = 76) was obviously down-regulated compared with healthy controls (n = 20). Serum exosomal miR-548a-3p was negatively associated with levels of CRP, RF, and ESR in serum of patients with RA. MiR-548a-3p could inhibit the proliferation and activation of pTHP-1 cells by regulating the TLR4/NF-κB signaling pathway. Accordingly, exosomes-delivered miR-548a-3p may be a critical factor predicting the disease activity of RA. MiR-548a-3p/TLR4/NF-κB axis can serve as promising targets for RA diagnosis and treatment.
Collapse
Affiliation(s)
- Yingliang Wang
- Qingdao University, Qingdao, China.,Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Feng Zheng
- Department of Nursing, Jining Chinese Medicine Hospital, Jining, China
| | - Guohong Gao
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Laixia Zhang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Li Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Xiao Cai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University and Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Jibo Wang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, Xu D. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol 2018; 233:6660-6668. [PMID: 29206292 DOI: 10.1002/jcp.26316] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
Abstract
Many studies have implicated that microRNAs (miRNAs), as non-coding RNAs, play important roles in the development and progression of colorectal cancer (CRC). However, little is known about the role of a newly identified miRNA, miR-6869-5p, in CRC. We aim to investigate the modifying effects and underlying mechanisms of miR-6869-5 in colorectal carcinogenesis and progression. Significantly reduced levels of miR-6869-5p were observed in both serum exosomes tumor tissue samples from patients with CRC. The prediction of targets of miR-6869-5p in databases of targetscan, microRNA. ORG and miRDBA revealed that toll-like receptor 4 (TLR4) is a potential target for this miRNA. MiR-6869-5p could inhibit cell proliferation and the production of inflammatory cytokines (TNF-α and IL-6) in CRC cells via directly targeting TLR4. The protective effect of miR-6869-5p from colorectal carcinogenesis was dependent on TLR4/NF-κB signaling pathway. In addition, the 3-year survival was poor among CRC patients with decreased levels of miR-6869-5p in serum exosomes. Thus, miR-6869-5p may serve as a tumor suppressor in CRC, and serum exosomal miR-6869-5p is a promising circulating biomarker for the prediction of CRC prognosis.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoyan Liu
- Department of Dermatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Zengfang Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Quanhong Duan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Medicine College, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
13
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
14
|
Song IJ, Yang YM, Inokuchi-Shimizu S, Roh YS, Yang L, Seki E. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer 2017; 142:81-91. [PMID: 28875549 DOI: 10.1002/ijc.31029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Hepatocyte death is associated with liver inflammation, fibrosis and hepatocellular carcinoma (HCC). Damaged cells trigger inflammation through activation of Toll-like receptors (TLRs). Although the role of TLR4 in HCC development has been reported, the role of TLR9 in the development of HCC remains elusive. To investigate the role of TLR4 and TLR9 signaling in liver inflammation-fibrosis-cancer axis, we took advantage of mice with hepatic deletion of transforming growth factor-β-activated kinase 1 (Tak1ΔHep) that develop spontaneous liver injury, inflammation, fibrosis, and HCC, recapitulating the pathology of human HCC. We generated double knockout mice lacking genes of our interest with hepatic Tak1. Tak1ΔHep mice and Tlr4-deficient Tak1ΔHep mice had similar serum ALT levels, but Tlr4-deficient Tak1ΔHep mice exhibited significantly reduced macrophage infiltration, myofibroblast activation and tumor formation. Ablation of TLR9 reduced spontaneous liver injury, inflammation, fibrosis, and cancer development in Tak1ΔHep mice. In addition, the common adaptor, myeloid differentiation factor 88 (MyD88)-deficient Tak1ΔHep mice also attenuated liver injury, macrophage recruitment, collagen deposition, and tumor growth compared with control Tak1ΔHep mice. Genetic ablation of TNF receptor type I (TNFR) in Tak1ΔHep mice remarkably reduced liver inflammation-fibrosis-cancer axis. Surprisingly, disruption of interleukin-1 receptor (IL-1R) had no effect on liver injury and tumor formation, although Il1r-deficient Tak1ΔHep showed attenuated macrophage infiltration and collagen deposition. In conclusion, TLR4- and TLR9-MyD88 are driving forces of progression to HCC accompanied by liver inflammation and fibrosis in Tak1ΔHep mice. Importantly, TLR4 and TLR9 downstream TNFR, but not IL-1R signaling is crucial for the development of HCC in Tak1ΔHep mice.
Collapse
Affiliation(s)
- Isabelle Jingyi Song
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California, 92093, USA
| | - Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA
| | - Sayaka Inokuchi-Shimizu
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California, 92093, USA
| | - Yoon Seok Roh
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA.,Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Chungbuk 28160, South Korea
| | - Ling Yang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California, 92093, USA.,Division of Gastroenterology, Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, California, 92093, USA.,Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA.,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California, 90048, USA
| |
Collapse
|
15
|
Sepehri Z, Kiani Z, Kohan F, Alavian SM, Ghavami S. Toll like receptor 4 and hepatocellular carcinoma; A systematic review. Life Sci 2017; 179:80-87. [PMID: 28472619 DOI: 10.1016/j.lfs.2017.04.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/16/2017] [Accepted: 04/29/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Toll like receptor 4 (TLR4) is an extracellular pathogen recognition receptor (PRR) which recognizes a wide range of pathogens and damage associated molecular patterns (PAMPs and DAMPs). It can activate intracellular signaling and consequently transcription factors which participate in transcription from either immune related or malignancy genes. Thus, it has been hypothesized that TLR4 may be a cause of hepatocellular carcinoma (HCC). This article has reviewed the roles of TLR4 in the pathogenesis of HCC. METHOD "TLR4", "hepatocellular carcinoma", "liver tumor" and "liver cancer" were used as key words for searching in Scopus, Google Scholar and MEDLINE scientific databases. RESULTS Most of the investigations documented the roles of TLR4 in induction of HCC via several mechanisms including increased number of T regulatory lymphocytes and liver resident follicular helper like cells, increased production of pro-inflammatory and malignancy related molecules including cytokines, NANOG, Caspase-1, Ephrin-A1, NO and BCL6. TLR4 participates in the proliferation of the cells and also production of the molecules in both chronic infectious and non-infectious inflammatory diseases. DISCUSSION TLR4 is an innate immunity receptor which plays a pathogenic role during chronic inflammation and can induce HCC in human.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran; Kerman University of Medical Sciences, Kerman, Iran.
| | - Farhad Kohan
- Student Research Committee, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
16
|
Wang X, Zhang W, Tang J, Huang R, Li J, Xu D, Xie Y, Jiang R, Deng L, Zhang X, Chai Y, Qin X, Sun B. LINC01225 promotes occurrence and metastasis of hepatocellular carcinoma in an epidermal growth factor receptor-dependent pathway. Cell Death Dis 2016; 7:e2130. [PMID: 26938303 PMCID: PMC4823934 DOI: 10.1038/cddis.2016.26] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/17/2022]
Abstract
The long noncoding RNAs (lncRNAs) have long been clarified to participate in hepatocellular carcinoma (HCC) as a biomarker. We carried out the present study in order to identify HCC-related lncRNAs and elucidate the functional roles in the development and progression of HCC. Our previous study has provided that LINC01225 may be an HCC-related gene. Here, we verified that LINC01225 was upregulated in HCC. Knockdown of LINC01225 resulted in inhibited cell proliferation and invasion with activated apoptosis and cell cycle arrest in vitro. Overexpression of LINC01225 in LINC01225 knockdown cells presented that attenuated cell proliferation and invasion were restored and enhanced. Subcutaneous and tail vein/intraperitoneal injection xenotransplantation model in vivo validated reduced tumor progression and metastasis. Investigation of mechanism found that LINC01225 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR, and subsequently fine tune the EGFR/Ras/Raf-1/MEK/MAPK signaling pathway. Analysis with clinicopathological information suggested a high expression of LINC01225 is positively associated with poor prognosis. We also proved that LINC01225 was stably expressed in serum and can act as a novel biomarker in predicting the diagnosis of HCC. As a conclusion, LINC01225 plays a crucial role in HCC and can act as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- X Wang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - W Zhang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - J Tang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - R Huang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - J Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - D Xu
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Y Xie
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - R Jiang
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - L Deng
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Zhang
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - Y Chai
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - X Qin
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, P.R. China
| | - B Sun
- Liver Transplantation Center of the First Affiliated Hospital and Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
17
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|