1
|
Zhang H, Gao H, Liu S, Ren X, Que L, Gu X, Rong S, Ma H, Ruan J, Miao M, Qi X, Chang D, Pan H. Dual electrochemical signal "signal-on-off" sensor based on CHA-Td-HCR and CRISPR-Cas12a for MUC1 detection. Talanta 2024; 279:126665. [PMID: 39116728 DOI: 10.1016/j.talanta.2024.126665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Mucin 1 (MUC1) is frequently overexpressed in various cancers and is essential for early cancer detection. Current methods to detect MUC1 are expensive, time-consuming, and require skilled personnel. Therefore, developing a simple, sensitive, highly selective MUC1 detection sensor is necessary. In this study, we proposed a novel "signal-on-off" strategy that, in the presence of MUC1, synergistically integrates catalytic hairpin assembly (CHA) with DNA tetrahedron (Td)-based nonlinear hybridization chain reaction (HCR) to enhance the immobilization of electrochemically active methylene blue (MB) on magnetic nanoparticles (MNP), marking the MB signal "on". Concurrently, the activation of CRISPR-Cas12a by isothermal amplification products triggers the cleavage of single-stranded DNA (ssDNA) at the electrode surface, resulting in a reduction of MgAl-LDH@Fc-AuFe-MIL-101 (containing ferrocene, Fc) on the electrode, presenting the "signal-off" state. Both MB and MgAl-LDH@Fc-AuFe-MIL-101 electrochemical signals were measured and analyzed. Assay parameters were optimized, and sensitivity, stability, and linear range were assessed. Across a concentration spectrum of MUC1 spanning from 10 fg/mL to 100 ng/mL, the MB and MgAl-LDH@Fc-AuFe-MIL-101 signals were calibrated with each other, demonstrating a "signal-on-off" dual electrochemical signaling pattern. This allows for the precise and quantitative detection of MUC1 in clinical samples, offering significant potential for medical diagnosis.
Collapse
Affiliation(s)
- Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; College of International Education, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hongmin Gao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Simin Liu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Longbin Que
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Gu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junbin Ruan
- Faculty of Foreign Languages, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Meng Miao
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xue Qi
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong Chang
- Department of Clinical Laboratory, The Affiliated Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
2
|
Gheybi E, Asoodeh A, Amani J. In silico designing and expression of novel recombinant construct containing the variable part of CD44 extracellular domain for prediagnostic breast cancer. Cancer Rep (Hoboken) 2023; 6:e1745. [PMID: 36289579 PMCID: PMC10026285 DOI: 10.1002/cnr2.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND CD44, as a tumor-associated marker, can be used to detect stem cells in breast cancer. While CD44 is expressed in normal epithelial cells, carcinoma cells overexpress CD44. AIMS In the current study, we designed a recombinant protein that included the variable component of the CD44 (CD44v) extracellular domain to apply in clinical diagnosis of breast cancer. METHODS A total of 100 CD44v amino-acid residues were determined, and the structure was examined using bioinformatics tools. The construct was inserted into the PET28a vector and transformed in E. coli BL21(DE3). A nearly 12 kDa fusion protein was obtained by Ni-NTA affinity metal chromatography. Recombinant CD44v was examined by Western blotting, ELISA, and immunohistochemistry (IHC) assays. RESULTS The findings revealed that the structure of rCD44v was stable, and its antigenic domain was exposed. The recombinant CD44v was confirmed by western blotting, and the presence of antibodies against recombinant CD44v protein in the patient's serum was detected by the ELISA. Our data demonstrated a link between CD44v serum levels and the prevalence of breast cancer. CONCLUSION Assessments of antiCD44v antibodies with rCD44v could be a useful tool for identifying breast cancer in its early stages, which can lead to better outcomes.
Collapse
Affiliation(s)
- Elaheh Gheybi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sui JH, Wei YY, Li J, Xu ZR. A portable multicolor aptasensor for MUC1 detection based on enzyme-mediated cascade reaction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sun M, Lu P, Yu C, Feng F, Li Q, Zhan J, Xu M, Liu Y, Yao L. Force-Coded Strategy for the Simultaneous Detection of Multiple Tumor-Related Proteins. Anal Chem 2022; 94:8992-8998. [PMID: 35713197 DOI: 10.1021/acs.analchem.2c01014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiplexed simultaneous detection of various cancer markers is required for accurate diagnosis and treatment of early cancer. In this work, we present a force-coded strategy for the simultaneous detection of tumor-related proteins with tunable dynamic range via magnetic sensing. The multiplexing capability of this method is achieved by designing DNA devices that can recognize different biomarkers and code them with different binding forces measured by the force-induced remnant magnetization spectroscopy, which is not influenced by the color of the light and the solution. Moreover, the force-coded assay with high sensitivity and adjustable detection range is robust, which could be used for practical biological applications such as magnetic sensing, handheld miniaturized systems, and potential in vivo diagnosis.
Collapse
Affiliation(s)
- Mengxue Sun
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Lu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chanchan Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxiu Zhan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajing Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021; 21:703-721. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accurate determination of the aberrantly expressed biomarkers such as human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), platelet-derived growth factor (PDGF), mucin 1 (MUC1), and vascular endothelial growth factor VEGF165 have played an essential role in the clinical management of the breast cancer. Assessment of these cancer-specific biomarkers has conventionally relied on time-taking methods like the enzyme-linked immunosorbent assay and immunohistochemistry. However, recent development in the aptamer-based diagnostics has allowed developing tools that may substitute the conventional means of biomarker assessment in breast cancer. Adopting the aptamer-based diagnostic tools (aptasensors) to clinical practices will depend on their analytical performance on clinical samples. AREAS COVERED In this review, we provide an overview of the analytical merits of HER2, CEA, PDGF, MUC1, and VEGF165 aptasensors. Scopus and Pubmed databases were searched for studies reporting aptasensor development for the listed breast cancer biomarkers in the past one decade. Linearity, detection limit, and response time are emphasized. EXPERT OPINION In our opinion, aptasensors have proven to be on a par with the antibody-based methods for detection of various breast cancer biomarkers. Though robust validation of the aptasensors on significant sample size is required, their ability to detect pathophysiological range of biomarkers suggest the possibility of future clinical adoption.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Nabab Khan
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon, India
| |
Collapse
|
6
|
A New Nanomaterial Based Biosensor for MUC1 Biomarker Detection in Early Diagnosis, Tumor Progression and Treatment of Cancer. ACTA ACUST UNITED AC 2021. [DOI: 10.3390/nanomanufacturing1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early detection of cancer disease is vital to the successful treatment, follow-up and survival of patients, therefore sensitive and specific methods are still required. Mucin 1 (MUC1) is a clinically approved biomarker for determining the cancer that is a type I transmembrane protein with a dense glycosylated extracellular domain extending from the cell surface to 200–500 nm. In this study, nanopolymers were designed with a lectin affinity-based recognition system for MUC1 detection as a bioactive layer on electrochemical biosensor electrode surfaces. They were synthesized using a mini emulsion polymerization method and derivatized with triethoxy-3-(2-imidazolin-1-yl) propylsilane (IMEO) and functionalized with Concanavalin a Type IV (Con A) lectin. Advanced characterization studies of nanopolymers were performed. The operating conditions of the sensor system have been optimized. Biosensor validation studies were performed. Real sample blood serum was analyzed and this new method compared with a commercially available medical diagnostic kit (Enzyme-Linked ImmunoSorbent Assay-ELISA). The new generation nanopolymeric material has been shown to be an affordable, sensitive, reliable and rapid device with 0.1–100 U/mL linear range and 20 min response time.
Collapse
|
7
|
Zhang G, Liu Z, Fan L, Han Y, Guo Y. A novel dual signal and label-free electrochemical aptasensor for mucin 1 based on hemin/graphene@PdPtNPs. Biosens Bioelectron 2020; 173:112785. [PMID: 33189017 DOI: 10.1016/j.bios.2020.112785] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
A dual signal and label-free electrochemical aptasensor for mucin 1 was constructed based on hemin/graphene@PdPtNPs nanocomposite (H-Gr@PdPtNPs). Hemin attached on the graphene surface not only improves the solubility of graphene and acts as an in-situ electrochemical probe but also exhibits excellent peroxidase-like properties to electrocatalyze the reduction of H2O2. PdPtNPs also show outstanding catalytic capacity to the reduction of H2O2 and provide numerous binding sites for loading dDNA (mucin 1 aptamer and cDNA) to form the sensing interface. In the presence of mucin 1, due to the specific affinity between aptamer and mucin 1, double helix would be induced dissociation and the aptamer would be pulled off from the electrode. As a result, the electrochemical signals of hemin and H2O2 were recovered. Based on these properties, the label-free and sensitive dual signal electrochemical biosensor for mucin 1 detection has been developed. The one is differential pulse voltammetry (DPV) signal of hemin and the other is chronoamperometry signal arisen from the catalytic reduction of H2O2. The linear ranges for mucin 1 were 8.0 pg mL-1 to 80 ng mL-1 and 0.8 pg mL-1 to 80 ng mL-1 with the limit of detection 2.5 pg mL-1 and 0.25 pg mL-1 by DPV and chronoamperometry, respectively. The recovery of mucin 1 in human blood serum samples was from 95.0% to 104.2%. The detection platform does not need signal labeling which greatly reduced the sophisticated and expensive procedures. The aptasensor provide a promising strategy for the determination of mucin 1 in clinical diagnostics.
Collapse
Affiliation(s)
- Guojuan Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Zhiguang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yujie Han
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
8
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
9
|
Rashidijahanabad Z, Huang X. Recent advances in tumor associated carbohydrate antigen based chimeric antigen receptor T cells and bispecific antibodies for anti-cancer immunotherapy. Semin Immunol 2020; 47:101390. [PMID: 31982247 DOI: 10.1016/j.smim.2020.101390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/01/2020] [Indexed: 11/17/2022]
Abstract
Tumor associated carbohydrate antigens (TACAs) are a class of attractive antigens for the development of anti-cancer immunotherapy. Besides monoclonal antibodies and vaccines, chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs) targeting TACA are exciting directions to harness the power of the immune system to fight cancer. In this review, we focus on two TACAs, i.e., the GD2 ganglioside and the mucin-1 (MUC1) protein. The latest advances in CAR T cells and bispecific antibodies targeting these two antigens are presented. The roles of co-stimulatory molecules, structures of the sequences for antigen binding, methods for CAR and antibody construction, as well as strategies to enhance solid tumor penetration and reduce T cell exhaustion and death are discussed. Furthermore, approaches to reduce "on target, off tumor" side effects are introduced. With further development, CAR T cells and BsAbs targeting GD2 and MUC1 can become powerful agents to effectively treat solid tumor.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Epitopes/genetics
- Epitopes/immunology
- Gangliosides/antagonists & inhibitors
- Gangliosides/chemistry
- Gangliosides/immunology
- Humans
- Immunotherapy, Adoptive
- Mucin-1/immunology
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/chemistry
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Zahra Rashidijahanabad
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Construction and Structural Assessment of Nanocapsule Containing HER2-MUC1 Chimeric Protein as a Candidate for a Vaccine Against Breast Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.66671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao RN, Feng Z, Zhao YN, Jia LP, Ma RN, Zhang W, Shang L, Xue QW, Wang HS. A sensitive electrochemical aptasensor for Mucin 1 detection based on catalytic hairpin assembly coupled with PtPdNPs peroxidase-like activity. Talanta 2019; 200:503-510. [PMID: 31036215 DOI: 10.1016/j.talanta.2019.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
In this work, an ultrasensitive aptasensor for the detection of Mucin 1 (MUC1) was presented based on the target-induced catalytic hairpin assembly combined with excellent mimic peroxidase performance of PtPd bimetallic nanoparticles (PtPdNPs). Traditionally, the cyclic reuse of target protein was achieved by protein conversion with enzyme cleavage or polymerization, which is costly and complex. However, in this work, it can be performed by simple strand displacement. In addition, PtPdNPs, a mimic peroxidase, was used a probe to catalyze the oxidation of tetramethylbenzidine (TMB) by H2O2, leading to the electrochemical signal amplification. With this ingenious design, the prepared aptasensor for MUC1 detection showed a favorable linear response from 100 fg mL-1 to 1 ng mL-1 and a relatively low detection limit of 16 fg mL-1. The proposed biosensor possessed acceptable stability, selectivity and reproducibility for MUC1 assay. Additionally, the fabricated aptasensor has been successfully applied to detect MUC1 in serum samples with satisfactory results. This new strategy supplied one efficient approach to improve signal amplification, which also open an avenue for sensitivity enhancement in targets detection.
Collapse
Affiliation(s)
- Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhe Feng
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ya-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
12
|
Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, Tehrani BS, Pasdar A, Mokhtarzadeh A, Ramezani M. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens Bioelectron 2019; 130:1-19. [PMID: 30716589 DOI: 10.1016/j.bios.2019.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Mucin 1 protein (MUC1) is a membrane-associated glycoprotein overexpressed in the majority of human malignancies and considered as a predominant protein biomarker in cancers. Owing to the crucial role of MUC1 in cancer dissemination and metastasis, detection and quantification of this biomarker is of great importance in clinical diagnostics. Today, there exist a wide variety of strategies for the determination of various types of disease biomarkers, especially MUC1. In this regard, aptamers, as artificial single-stranded DNA or RNA oligonucleotides with catalytic and receptor properties, have drawn lots of attention for the development of biosensing platforms. So far, various sensitivity-enhancement techniques in combination with a broad range of smart nanomaterials have integrated into the design of novel aptamer-based biosensors (aptasensors) to improve detection limit and sensitivity of analyte determination. This review article provides a brief classification and description of the research progresses of aptamer-based biosensors and nanobiosensors for the detection and quantitative determination of MUC1 based on optical and electrochemical platforms.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zare
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Jafar Mosafer
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Bahram Soltani Tehrani
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Pharmacology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Somovilla VJ, Bermejo IA, Albuquerque IS, Martínez-Sáez N, Castro-López J, García-Martín F, Compañón I, Hinou H, Nishimura SI, Jiménez-Barbero J, Asensio JL, Avenoza A, Busto JH, Hurtado-Guerrero R, Peregrina JM, Bernardes GJL, Corzana F. The Use of Fluoroproline in MUC1 Antigen Enables Efficient Detection of Antibodies in Patients with Prostate Cancer. J Am Chem Soc 2017; 139:18255-18261. [PMID: 29166012 DOI: 10.1021/jacs.7b09447] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A structure-based design of a new generation of tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-l-proline or 4,4-difluoro-l-proline, at the most immunogenic domain. Binding assays using biolayer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/π interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for prostate cancer.
Collapse
Affiliation(s)
- Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University , Universiteitsweg 99, Utrecht, The Netherlands
| | - Iris A Bermejo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Inês S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina da, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University , Universiteitsweg 99, Utrecht, The Netherlands
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) , Zaragoza, Spain
| | - Fayna García-Martín
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Jesús Jiménez-Barbero
- (i) CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain; (ii) Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain; (iii) Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country , 48940 Leioa, Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC , 28006 Madrid, Spain
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) , Zaragoza, Spain.,Fundación ARAID , 50018 Zaragoza, Spain
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Department of Chemistry, University of Cambridge , Lensfield Road, CB2 1EW Cambridge, U.K
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| |
Collapse
|
14
|
Wang J, Gao ZP, Qin S, Liu CB, Zou LL. Calreticulin is an effective immunologic adjuvant to tumor-associated antigens. Exp Ther Med 2017; 14:3399-3406. [PMID: 29042925 DOI: 10.3892/etm.2017.4989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022] Open
Abstract
As a key molecule involved in cell recognition, calreticulin (CRT) may be expressed on the surface of (pre-) apoptotic cells and provide the signal that is recognized by dendritic cells (DCs) or other antigen presenting cells (APCs), which results in phagocytosis. Within the APCs, tumor-associated antigens (TAAs) may be subsequently presented to T lymphocytes, which triggers a specific antitumor immune response. It has been hypothesized that CRT is able to act as the immunologic adjuvant and translocate itself and TAAs to the cell surface and induce a specific antitumor immune response. In the present study, CRT was demonstrated to translocate itself and mucin 1 (MUC1), a breast cancer antigen, to the surface of 4T1 cells and the MUC1-CRT-coated cells were able to induce apoptosis in a time-dependent manner. When DCs were infected with adenovirus containing MUC1-CRT, an increase in T cell proliferation and cytokine production was exhibited. These results suggest that CRT may act as an immunologic adjuvant with MUC1 and induce a strong immune response.
Collapse
Affiliation(s)
- Jun Wang
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhi Peng Gao
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Song Qin
- Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chang Bai Liu
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Li Li Zou
- Translational Neuroscience and Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First People's Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443000, P.R. China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
15
|
Monteiro JP, Predabon SM, Bonafé EG, Martins AF, Brolo AG, Radovanovic E, Girotto EM. SPR platform based on image acquisition for HER2 antigen detection. NANOTECHNOLOGY 2017; 28:045206. [PMID: 27997366 DOI: 10.1088/1361-6528/28/4/045206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
HER2 antigen is a marker used for breast cancer diagnosis and prevention. Its determination has great importance since breast cancer is one of the most insidious types of cancer in women. HER2 antigen assessment in human serum is traditionally achieved by enzyme-linked immunosorbent assay (ELISA method), but it has some disadvantages, such as suppressing the thermodynamic-kinetic studies regarding the antibody-antigen interaction, and the use of labeled molecules that can promote false positive responses. Biosensors based on surface plasmon resonance (SPR) are sensitive optical techniques widely applied on bioassays. The plasmonic devices do not operate with labeled molecules, overcoming conventional immunoassay limitations, and enabling a direct detection of target analytes. In this way, a new SPR biosensor to assess HER2 antigen has been proposed, using nanohole arrays on a gold thin film by signal transduction of transmitted light measurements from array image acquisitions. These metallic nanostructures may couple the light directly on surface plasmons using a simple collinear arrangement. The proposed device reached an average sensitivity for refractive index (RI) variation on a metal surface of 4146 intensity units/RIU (RIU = RI units). The device feasibility on biomolecular assessment was evaluated. For this, 3 ng ml-1 known HER2 antigen concentration was efficiently flowed (using a microfluidic system) and detected from aqueous solutions. This outcome shows that the device may be a powerful apparatus for bioassays, particularly toward breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Johny P Monteiro
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringá, Colombo Avenue 5790, 87020-900, Maringá, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. SCIENCE CHINA-LIFE SCIENCES 2016; 59:386-97. [PMID: 26961900 DOI: 10.1007/s11427-016-5024-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 01/16/2016] [Indexed: 02/05/2023]
Abstract
Recent progress in chimeric antigen receptor-modified T-cell (CAR-T cell) technology in cancer therapy is extremely promising, especially in the treatment of patients with B-cell acute lymphoblastic leukemia. In contrast, due to the hostile immunosuppressive microenvironment of a solid tumor, CAR T-cell accessibility and survival continue to pose a considerable challenge, which leads to their limited therapeutic efficacy. In this study, we constructed two anti-MUC1 CAR-T cell lines. One set of CAR-T cells contained SM3 single chain variable fragment (scFv) sequence specifically targeting the MUC1 antigen and co-expressing interleukin (IL) 12 (named SM3-CAR). The other CAR-T cell line carried the SM3 scFv sequence modified to improve its binding to MUC1 antigen (named pSM3-CAR) but did not co-express IL-12. When those two types of CAR-T cells were injected intratumorally into two independent metastatic lesions of the same MUC1(+) seminal vesicle cancer patient as part of an interventional treatment strategy, the initial results indicated no side-effects of the MUC1 targeting CAR-T cell approach, and patient serum cytokines responses were positive. Further evaluation showed that pSM3-CAR effectively caused tumor necrosis, providing new options for improved CAR-T therapy in solid tumors.
Collapse
|
17
|
Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp). Appl Biochem Biotechnol 2015; 177:624-36. [DOI: 10.1007/s12010-015-1766-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
|
18
|
Balabanova L, Golotin V, Podvolotskaya A, Rasskazov V. Genetically modified proteins: functional improvement and chimeragenesis. Bioengineered 2015. [PMID: 26211369 DOI: 10.1080/21655979.2015.1075674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit.
Collapse
Affiliation(s)
- Larissa Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | - Vasily Golotin
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia.,b Far Eastern Federal University ; Vladivostok , Russia
| | | | - Valery Rasskazov
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry; Far Eastern Branch; Russian Academy of Science ; Vladivostok , Russia
| |
Collapse
|