1
|
Hao J, Han G, Liang X, Ruan Y, Huang C, Sa N, Hu H, Hu B, Li Z, Zhang K, Gao P, Dong X. PELO regulates erythroid differentiation through interaction with MYC to upregulate KLF10. FEBS J 2024; 291:4714-4731. [PMID: 39206622 DOI: 10.1111/febs.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/27/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Erythropoiesis is a multistep process of erythroid cell production that is controlled by multiple regulatory factors. Ribosome rescue factor PELO plays a crucial role in cell meiotic division and mice embryonic development. However, the function of PELO in erythroid differentiation remains unclear. Here, we showed that knockdown of PELO increased hemin-induced erythroid differentiation of K562 and HEL cells, exhibiting a higher number of benzidine-positive cells and increased mRNA levels of erythroid genes. PELO knockdown inhibited the proliferation and cell cycle progression and promoted apoptosis of K562 cells. Mechanistically, PELO could regulate the expression of KLF10 through interaction with MYC. Moreover, KLF10 knockdown also enhanced erythroid differentiation of K562 and HEL cells induced by hemin. Collectively, our results demonstrated that PELO regulates erythroid differentiation and increases KLF10 expression levels by interacting with MYC.
Collapse
Affiliation(s)
- Jinglan Hao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guiqin Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin Liang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yongtong Ruan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Naer Sa
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hang Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bixi Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhongqi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kai Zhang
- Hansoh Bio, 9600 Medical Center drive, Rockville, USA
| | - Ping Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoming Dong
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
2
|
6,7-Dimethoxycoumarin Influences the Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells through Regulating FOXO3/p27 Signal Pathway. JOURNAL OF ONCOLOGY 2022; 2022:1138851. [PMID: 35607323 PMCID: PMC9124080 DOI: 10.1155/2022/1138851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study the pharmacological activity and the mechanism of action of natural compounds derived from 6,7-dimethoxycoumarin on the differentiation of human chronic myeloid leukemia K562 cells. Methods. We use MTT assay (Sigma-Aldrich, USA) to detect cell viability; use flow cytometry to analyze DNA content for cell cycle analysis; use benzidine staining to synthesize hemoglobin to determine K562 cell differentiation; use western blot analysis and qPCR to detect the expression levels of FOX03, P27, CDK4, and their phosphorylation; and use the AOBS laser scanning confocal system (Leica, Wetzlar, Germany) to analyze and quantify the number of positive green spots. The statistical methods used are one-way analysis of variance (ANOVA) and Dunnett’s test to analyze within and between groups. Results. In order to explore the effect of 6,7-dimethoxycoumarin on the differentiation of K562 cell erythrocytes, it was concluded that 6,7-dimethoxycoumarin promotes the differentiation of K562 cell erythrocytes; the proliferation of K562 cells was detected by MTT method, and the results showed that 6,7-dimethoxycoumarin can inhibit the proliferation of K562 cells; to evaluate the effect of 6,7-dimethoxycoumarin on the proliferation of K562 cells, the results showed that 6,7-dimethoxycoumarin increased the expression of FOXO3, P27, CDK4, and CDK65, and decreased the phosphorylation of CDK4 and CDK6 proteins. To further explore the effect of knocking out FOXO3 on cell differentiation, the results show that 6,7-dimethoxycoumarin can reduce the differentiation and proliferation of K562 cells by increasing the expression of FOXO3. Conclusion. This study extended the understanding of the pharmacological activity of 6,7-dimethoxycoumarin and may provide a potential new target for the treatment of chronic myelogenous leukemia. However, we still need to further study the specific molecular capabilities of 6.7 dimethylcoumarin to understand their possible capture mechanism.
Collapse
|
3
|
Wang TF, Lin GL, Chu SC, Chen CC, Liou YS, Chang HH, Sun DS. AQP0 is a novel surface marker for deciphering abnormal erythropoiesis. Stem Cell Res Ther 2021; 12:274. [PMID: 33957977 PMCID: PMC8101103 DOI: 10.1186/s13287-021-02343-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background Hematopoiesis occurs in the bone marrow, producing a complete spectrum of blood cells to maintain homeostasis. In addition to light microscopy, chromosome analysis, and polymerase chain reaction, flow cytometry is a feasible and fast method for quantitatively analyzing hematological diseases. However, because sufficient specific cell markers are scarce, dyserythropoietic diseases are challenging to identify through flow cytometry. Methods Bone marrow samples from C57BL/B6 mice and one healthy donor were analyzed using traditional two-marker (CD71 and glycophorin A) flow cytometry analysis. After cell sorting, the gene expressions of membrane proteins in early and late erythropoiesis precursors and in nonerythroid cells were characterized using microarray analysis. Results Among characterized gene candidates, aquaporin 0 (AQP0) expressed as a surface protein in early- and late-stage erythropoiesis precursors and was not expressed on nonerythroid cells. With the help of AQP0 staining, we could define up to five stages of erythropoiesis in both mouse and human bone marrow using flow cytometry. In addition, because patients with dyserythropoiesis generally exhibited a reduced population of APQ0high cells relative to healthy participants, the analysis results also suggested that the levels of APQ0high cells in early erythropoiesis serve as a novel biomarker that distinguishes normal from dysregulated erythropoiesis. Conclusions AQP0 was successfully demonstrated to be a marker of erythroid differentiation. The expression levels of AQP0 are downregulated in patients with dyserythropoiesis, indicating a critical role of AQP0 in erythropoiesis. Accordingly, the level of AQP0high in early erythroid precursor cells may serve as a reference parameter for diagnosing diseases associated with dyserythropoiesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02343-4.
Collapse
Affiliation(s)
- Tso-Fu Wang
- Departments of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,College of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Sung-Chao Chu
- Departments of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China.,College of Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Chang-Chin Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.,Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
4
|
Wei M, Yu H, Cai C, Gao R, Liu X, Zhu H. MiR-3194-3p Inhibits Breast Cancer Progression by Targeting Aquaporin1. Front Oncol 2020; 10:1513. [PMID: 32903818 PMCID: PMC7438898 DOI: 10.3389/fonc.2020.01513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that the Aquaporin1 (AQP1) aberrant expression may be related to a wide variety of human cancers, including breast cancer (BC). In the present study, we explore the effects and possible mechanism of miR-3194-3p on the biological behaviors of BC. At first, miR-3194-3p is found to modulate AQP1 expression targeting the 3′-UTR using miRNA target prediction algorithms. MiR-3194-3p expression is markedly downregulated, and AQP1 expression is upregulated in BC tissues compared with adjacent normal breast tissues. Moreover, the differential expression of miR-3194-3p and AQP1 are observed in four BC cells with different malignancy degree. Meanwhile, a significant negative correlation between AQP1 and miR-3194-3p expressions in tumor tissues from 30 BC patients is revealed. miR-3194-3p mimic remarkably inhibits cell proliferation, migration, and invasion as well as promotes apoptosis in MDA-MB-231 cells while miR-3194-3p inhibitors exert an opposite role in MCF-7 cells. Dual-luciferase reporter system demonstrates that AQP1 is a direct target gene of miR-3194-3p. Overexpression of AQP1 by pBABE-puro-AQP1 vector partially abrogates the effect of miR-3194-3p mimic in MDA-MB-231 cells. In short, our results suggest that miR-3194-3p suppresses BC cell proliferation, migration, and invasion by targeting AQP1, providing a novel insight into BC tumorigenesis and treatment.
Collapse
Affiliation(s)
- Min Wei
- Clinical Laboratory, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China.,Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cuixia Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Gao
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Xuhua Liu
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Huimin Zhu
- Department of Science and Education, Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
5
|
Wei M, Yu H, Zhang Y, Zeng J, Cai C, Shi R. Decreased expression of aquaporin 1 correlates with clinicopathological features of patients with cervical cancer. Onco Targets Ther 2019; 12:2843-2851. [PMID: 31118662 PMCID: PMC6499498 DOI: 10.2147/ott.s194650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: We aimed to investigate the expression dynamics of Aquaporin 1 (AQP1) in cervical cancer and evaluate correlations among AQP1 levels and the clinicopathological features of patients with cervical cancer. Patients and methods:AQP1 mRNA and protein levels in cervical cancer and adjacent normal tissues were evaluated by quantitative reverse-transcription PCR (qRT-PCR) and western blot. Immunohistochemistry (IHC) for AQP1 was performed with a tissue microarray of cervical cancer (containing 63 cases of squamous cell cervical cancers and 10 normal cervical tissues) to investigate clinicopathological outcomes. Cut-off scores for positive expression of AQP1 were determined by receiver operating characteristic analysis. The χ2 test was used to analyze correlations among AQP1 expression and clinicopathological features of cervical cancer. Results: The expression of AQP1 was decreased in the majority of cervical cancer tissues by qRT-PCR and western blot analysis. Positive expression of AQP1 was observed in 100% (10/10) of normal cervical tissues and in 42.86% (27/63) of cervical cancer tissues by IHC analysis. The cut-off score for positive expression of AQP1 was determined to be 45% of cancer cells. Decreased expression of AQP1 was correlated with clinicopathological features including; poor pathological grade (P=0.000), late International Federation of Gynecology and Obstetrics stage (P=0.008), and positive lymph nodes (P=0.002). Conclusion: These data suggest that decreased expression of AQP1 correlated with progressive features in patients with cervical cancer. AQP1 levels may serve as a potential biomarker for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Min Wei
- Clinical Laboratory, Nanshan Maternity & Child Healthcare Hospital, Shenzhen, Guangdong 518067, People's Republic of China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, The General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, People's Republic of China
| | - Jun Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Cuixia Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Rong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
6
|
Chen Q, Zhu L, Zheng B, Wang J, Song X, Zheng W, Wang L, Yang D, Wang J. Effect of AQP9 Expression in Androgen-Independent Prostate Cancer Cell PC3. Int J Mol Sci 2016; 17:ijms17050738. [PMID: 27187384 PMCID: PMC4881560 DOI: 10.3390/ijms17050738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022] Open
Abstract
It is known that aquaporin 9 (AQP9) in the prostate was strictly upregulated by androgen and may represent a novel therapeutic target for several cancers, but whether AQP9 plays a role in the regulation of androgen-independent prostate cancer still remains unclear. In the present study, AQP9 was determined in prostate cancer and adjacent cancer tissues; AQP9-siRNA was applied to silencing AQP9 in androgen-independent prostate cancer cell PC3 cell line. Western blot and flow cytometry analysis were employed to detect changes in related-function of control and AQP9-siRNA groups. The results showed that AQP9 is significantly induced in cancer tissues than that in adjacent cancer tissues. Moreover, knockdown of AQP9 in PC3 androgen-independent prostate cancer cell prostate cancer cells increased inhibition rates of proliferation. In addition, knockdown of AQP9 resulted in a significant decrease in the expression of the Bcl-2 and with a notable increase in the expression of Bax and cleaved caspase 3, indicated that AQP9 knockdown promoted apoptosis in prostate cancer cells. From wound healing assay and matrigel invasion, we suggested that AQP9 expression affects the motility and invasiveness of prostate cancer cells. Moreover, In order to explore the pathway may be involved in AQP9-mediated motility and invasion of prostate cancer cells, the phosphorylation of ERK1/2 was significant suppressed in AQP9 siRNA-transfected cells compared with that in control cells, suggesting that AQP9 is involved in the activation of the ERK pathway in androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Liang Zhu
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China.
| | - Bo Zheng
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jinliang Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Xishuang Song
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Wei Zheng
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jianbo Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
7
|
Li Z, Li B, Zhang L, Chen L, Sun G, Zhang Q, Wang J, Zhi X, Wang L, Xu Z, Xu H. The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumour Biol 2016; 37:9169-79. [PMID: 26768614 DOI: 10.1007/s13277-015-4753-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/29/2015] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is a big threat to human health. Effective therapeutic cancer target remains to be discovered. Aquaporin 3 (AQP3) belongs to a family of transmembrane channels that are important in transporting water, glycerol, and other small molecules across the cell membrane. Glycerol that is transported by AQP3 is necessary for cell energy generation and lipid synthesis which fulfill the cell biological processes. Previous studies have shown that AQP3 is implicated in disease progression in several cancer types. However, whether AQP3-regulated glycerol uptake and metabolism were involved in cancer progression remains to be further studied. Our study demonstrated that the expression of AQP3 was positively correlated with glycerol level in human gastric cancer tissues. AQP3 inhibition induced proliferation impairment in gastric cancer cells both in vitro and in vivo. AQP3 inhibition that induced glycerol uptake reduction and glycerol administration would rehabilitate the cell proliferation. The energy and lipid production decreased when AQP3 was knocked down since the cellular glycerol level and several lipogenesis enzymes were downregulated. PI3K/Akt signaling pathway, which was involved in the impaired lipid and ATP production, was also inhibited after AQP3 knockdown. Our study indicated that the energy and lipid production inhibition, which were responsible for gastric cancer cell proliferation impairment, were induced by glycerol uptake reduction after AQP3 knockdown.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiwei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, The People's Hospital of Taizhou, Taizhou, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|