1
|
Rowlands CE, Folberg AM, Beickman ZK, Devor EJ, Leslie KK, Givens BE. Particles and Prejudice: Nanomedicine Approaches to Reducing Health Disparities in Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300096. [PMID: 37312613 PMCID: PMC10716380 DOI: 10.1002/smll.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.
Collapse
Affiliation(s)
- Claire E Rowlands
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| | - Abigail M Folberg
- Department of Psychology, University of Nebraska at Omaha, 6100 W. Dodge Road, ASH 347E, Omaha, NE, 68182, USA
| | - Zachary K Beickman
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center | The University of New Mexico Health Sciences Center, 1021 Medical Arts Ave NE, Albuquerque, NM, 87131, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| |
Collapse
|
2
|
Gagneja S, Capalash N, Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic biomolecule against cancer: A review on its dual role. Int J Biol Macromol 2024; 275:133744. [PMID: 38986990 DOI: 10.1016/j.ijbiomac.2024.133744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Hyaluronic acid is a major constituent of the extracellular matrix of vertebrate tissue that provides mechanical support to cells and acts as a mediator in regulation of necessary biochemical process essential for maintenance of tissue homeostasis. The variation in quantity of hyaluronic acid content in tissues is often associated with different pathological conditions. It is associated with tumor aggression and progression as it plays crucial role in regulating different aspects of tumorigenesis and several defined hallmarks of cancer. It assists in tumor progression by undergoing extracellular remodeling to establish tumor microenvironment which restricts the delivery of cytotoxic drugs to neoplastic cells due to increase in interstitial pressure. Hyaluronic acid catabolic and anabolic genes and low-molecular weight hyaluronic acid play significant role in the establishing tumor microenvironment by assisting in cell proliferation, metastasis and invasion. On the other hand, it is also used as an effective drug-delivery platform in cancer therapies as its biocompatibility and biodegradability lower the toxicity of chemotherapeutic drugs and increase drug retention. High-molecular weight hyaluronic acid-bioconjugates specifically bind with hyaladherins, facilitating targeted drug delivery and also exert anti-inflammatory properties. This review also highlights the market and patent trends in the development of effective chemotherapeutic hyaluronic acid formulations and the current scenario regarding clinical trials.
Collapse
Affiliation(s)
- Simran Gagneja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Role of Hyaluronic Acid in Selected Malignant Neoplasms in Women. Biomedicines 2023; 11:biomedicines11020304. [PMID: 36830841 PMCID: PMC9953106 DOI: 10.3390/biomedicines11020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid (HA) is a significant glycosaminoglycan component of the extracellular matrix, playing an essential role in cell localization and proliferation. However, high levels of HA may also correlate with multidrug resistance of tumor cells, an increased tendency to metastasize, or cancer progression, and thus represent a very unfavorable prognosis for cancer patients. The purpose of this review article is to summarize the results of studies describing the relationship between HA, the main ligand of the CD44 receptor, or other components of the HA signaling pathway. In addition, we review the course of selected female malignancies, i.e., breast, cervical, endometrial, and ovarian cancer, with the main focus on the mechanisms oriented to CD44. We also analyze reports on the beneficial use of HA-containing preparations in adjuvant therapy among patients with these types of cancer. Data from the literature suggest that HA and its family members may be critical prognostic biomarkers of selected malignancies among women. Nevertheless, the results of the available studies are inconclusive, and the actual clinical significance of HA expression analysis is still quite enigmatic. In our opinion, the HA-CD44 signaling pathway should be an attractive target for future research related to targeted therapy in gynecological cancers.
Collapse
|
4
|
Lei Y, Li X, Qin D, Zhang Y, Wang Y. gC1qR: A New Target for Cancer Immunotherapy. Front Immunol 2023; 14:1095943. [PMID: 36776869 PMCID: PMC9909189 DOI: 10.3389/fimmu.2023.1095943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Although breakthroughs in cancer treatment have been achieved, immunotherapy yields only modest benefits in most patients. There is still a gap in clarifying the immune evasiveness and immune-resistance mechanisms. Identifying other candidate targets for cancer immunotherapy is therefore a clear unmet clinical need. The complement system, a pillar of innate immunity, has recently entered the limelight due to its immunoregulatory functions in the tumor microenvironment (TME). In particular, gC1qR, a receptor for globular heads of C1q, serves as a promising new target and has attracted more attention. gC1qR, also named P32/C1qBP/HABP1, is a multifunctional protein that is overexpressed in various cancers and holds prognostic value. It regulates the tumorigenic, progression and metastatic properties of tumor cells through several downstream signaling pathways, including the Wnt/β-catenin, PKC-NF-κB and Akt/PKB pathways. A few preclinical experiments conducted through gC1qR interventions, such as monoclonal antibody, chimeric antigen receptor T-cell (CAR-T) therapy, and tumor vaccination, have shown encouraging results in anticancer activity. The efficacy may rely on the regulatory role on the TME, induction of tumor cells apoptosis and antiangiogenic activity. Nevertheless, the current understanding of the relationship between cancer immunotherapy and gC1qR remains elusive and often contradictory, posing both opportunities and challenges for therapeutic translation in the clinic. In this review, we focus on the current understanding of gC1qR function in cancer immunology and highlight the vital roles in regulating the TME. We also examines the rationale behind targeting gC1qR and discusses the potential for translating into clinical practice.
Collapse
Affiliation(s)
- Yanna Lei
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Diyuan Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.,Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Adachi Y, Sato N, Oba T, Amaike T, Kudo Y, Kohi S, Nakayama T, Hirata K. Prognostic and functional role of hyaluronan‑binding protein 1 in pancreatic ductal adenocarcinoma. Oncol Lett 2022; 24:222. [PMID: 35720501 PMCID: PMC9178692 DOI: 10.3892/ol.2022.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is among the molecules known to bind to hyaluronan and is involved in a variety of cellular processes, including cell proliferation and migration. HABP1 has been implicated in the progression of various cancers; however, there have been (to the best of our knowledge) few studies on the expression and function of HABP1 in pancreatic ductal adenocarcinoma (PDAC), a topic that is examined in the present study. Immunohistochemical analysis of HABP1 protein was conducted in archival tissues from 105 patients with PDAC. Furthermore, the functional effect of HABP1 on proliferation, colony formation, and migration in PDAC cells was examined by knockdown of HABP1. It was revealed that HABP1 was overexpressed in 49 (46.2%) out of 105 patients with PDAC. Overall survival was significantly shorter in patients with high HABP1 expression than in those with low HABP1 expression (median survival time of 12.8 months vs. 28.5 months; log-rank test, P=0.004). Knockdown of HABP1 expression in PDAC cells resulted in decreased cell proliferation, colony formation, and cell migration activity. Thus, HABP1 may serve as a prognostic factor in PDAC and may be of use as a novel therapeutic target.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Norihiro Sato
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takuya Oba
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takao Amaike
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yuzan Kudo
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shiro Kohi
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Keiji Hirata
- Department of Surgery I, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
6
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
7
|
Wang J, Huang CLH, Zhang Y. Complement C1q Binding Protein (C1QBP): Physiological Functions, Mutation-Associated Mitochondrial Cardiomyopathy and Current Disease Models. Front Cardiovasc Med 2022; 9:843853. [PMID: 35310974 PMCID: PMC8924301 DOI: 10.3389/fcvm.2022.843853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Complement C1q binding protein (C1QBP, p32) is primarily localized in mitochondrial matrix and associated with mitochondrial oxidative phosphorylative function. C1QBP deficiency presents as a mitochondrial disorder involving multiple organ systems. Recently, disease associated C1QBP mutations have been identified in patients with a combined oxidative phosphorylation deficiency taking an autosomal recessive inherited pattern. The clinical spectrum ranges from intrauterine growth restriction to childhood (cardio) myopathy and late-onset progressive external ophthalmoplegia. This review summarizes the physiological functions of C1QBP, its mutation-associated mitochondrial cardiomyopathy shown in the reported available patients and current experimental disease platforms modeling these conditions.
Collapse
Affiliation(s)
- Jie Wang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
| | | | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Xi'an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an, China
- Shaanxi Institute for Pediatric Diseases, Xi'an, China
- Xi'an Key Laboratory of Children's Health and Diseases, Xi'an, China
- Department of Cardiology of Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Yanmin Zhang
| |
Collapse
|
8
|
Wang J, Xu P, Yang X, Yu Q, Xu X, Zou G, Zhang X. Association of Myometrial Invasion With Lymphovascular Space Invasion, Lymph Node Metastasis, Recurrence, and Overall Survival in Endometrial Cancer: A Meta-Analysis of 79 Studies With 68,870 Patients. Front Oncol 2021; 11:762329. [PMID: 34746002 PMCID: PMC8567142 DOI: 10.3389/fonc.2021.762329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background Myometrial invasion has been demonstrated to correlate to clinicopathological characteristics and prognosis in endometrial cancer. However, not all the studies have the consistent results and no meta-analysis has investigated the association of myometrial invasion with lymphovascular space invasion (LVSI), lymph node metastasis (LNM), recurrence, and overall survival (OS). Therefore, a meta-analysis was performed to evaluate the relationship between myometrial invasion and clinicopathological characteristics or overall survival in endometrial cancer. Materials and Methods A search of Pubmed, Embase, and Web of Science was carried out to collect relevant studies from their inception until June 30, 2021. The quality of each included study was evaluated using Newcastle–Ottawa scale (NOS) scale. Review Manager version 5.4 was employed to conduct the meta-analysis. Results A total of 79 articles with 68,870 endometrial cancer patients were eligible including 9 articles for LVSI, 29 articles for LNM, 8 for recurrence, and 37 for OS in this meta-analysis. Myometrial invasion was associated with LVSI (RR 3.07; 95% CI 2.17–4.35; p < 0.00001), lymph node metastasis (LNM) (RR 4.45; 95% CI 3.29–6.01; p < 0.00001), and recurrence (RR 2.06; 95% CI 1.58–2.69; p < 0.00001). Deep myometrial invasion was also significantly related with poor OS via meta-synthesis of HRs in both univariate survival (HR 3.36, 95% CI 2.35–4.79, p < 0.00001) and multivariate survival (HR 2.00, 95% CI 1.59–2.53, p < 0.00001). Funnel plot suggested that there was no significant publication bias in this study. Conclusion Deep myometrial invasion correlated to positive LVSI, positive LNM, cancer recurrence, and poor OS for endometrial cancer patients, indicating that myometrial invasion was a useful evaluation criterion to associate with clinical outcomes and prognosis of endometrial cancer since depth of myometrial invasion can be assessed before surgery. The large scale and comprehensive meta-analysis suggested that we should pay more attention to myometrial invasion in clinical practice, and its underlying mechanism also deserves further investigation.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueying Yang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qin Yu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gen Zou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Raschdorf A, Sünderhauf A, Skibbe K, Ghebrehiwet B, Peerschke EI, Sina C, Derer S. Heterozygous P32/ C1QBP/ HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Front Oncol 2021; 10:631592. [PMID: 33628739 PMCID: PMC7897657 DOI: 10.3389/fonc.2020.631592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (C1QBP/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues. We recently demonstrated high levels of non-mitochondrial p32 to be associated with high-grade colorectal carcinoma. Mutations in human p32 are likely to disrupt proper mitochondrial function giving rise to various diseases including cancer. Hence, we aimed to investigate the impact of the most common single nucleotide polymorphism (SNP) rs56014026 in the coding sequence of p32 on tumor cell metabolism. In silico homology modeling of the resulting p.Thr130Met mutated p32 revealed that the single amino acid substitution potentially induces a strong conformational change in the protein, mainly affecting the mitochondrial targeting sequence (MTS). In vitro experiments confirmed an impaired mitochondrial import of mutated p32-T130M, resulting in reduced OXPHOS activity and a shift towards a low metabolic phenotype. Overexpression of p32-T130M maintained terminal differentiation of a goblet cell-like colorectal cancer cell line compared to p32-wt without affecting cell proliferation. Sanger sequencing of tumor samples from 128 CRC patients identified the heterozygous SNP rs56014026 in two well-differentiated, low proliferating adenocarcinomas, supporting our in vitro data. Together, the SNP rs56014026 reduces metabolic activity and proliferation while promoting differentiation in tumor cells.
Collapse
Affiliation(s)
- Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kerstin Skibbe
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Anti gC1qR/p32/HABP1 Antibody Therapy Decreases Tumor Growth in an Orthotopic Murine Xenotransplant Model of Triple Negative Breast Cancer. Antibodies (Basel) 2020; 9:antib9040051. [PMID: 33036212 PMCID: PMC7709104 DOI: 10.3390/antib9040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
gC1qR is highly expressed in breast cancer and plays a role in cancer cell proliferation. This study explored therapy with gC1qR monoclonal antibody 60.11, directed against the C1q binding domain of gC1qR, in a murine orthotopic xenotransplant model of triple negative breast cancer. MDA231 breast cancer cells were injected into the mammary fat pad of athymic nu/nu female mice. Mice were segregated into three groups (n = 5, each) and treated with the vehicle (group 1) or gC1qR antibody 60.11 (100 mg/kg) twice weekly, starting at day 3 post-implantation (group 2) or when the tumor volume reached 100 mm3 (group 3). At study termination (d = 35), the average tumor volume in the control group measured 895 ± 143 mm3, compared to 401 ± 48 mm3 and 701 ± 100 mm3 in groups 2 and 3, respectively (p < 0.05). Immunohistochemical staining of excised tumors revealed increased apoptosis (caspase 3 and TUNEL staining) in 60.11-treated mice compared to controls, and decreased angiogenesis (CD31 staining). Slightly decreased white blood cell counts were noted in 60.11-treated mice. Otherwise, no overt toxicities were observed. These data are the first to demonstrate an in vivo anti-tumor effect of 60.11 therapy in a mouse model of triple negative breast cancer.
Collapse
|
11
|
Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack AK, Perner S, Kemper C, Ghebrehiwet B, Sina C, Derer S. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol 2020; 10:575854. [PMID: 33102234 PMCID: PMC7556196 DOI: 10.3389/fonc.2020.575854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Self-sustained cell proliferation constitutes one hallmark of cancer enabled by aerobic glycolysis which is characterized by imbalanced glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) activity, named the Warburg effect. The C1q binding protein (C1QBP; gC1qR) is pivotal for mitochondrial protein translation and thus OXPHOS activity. Due to its fundamental role in balancing OXPHOS and glycolysis, c1qbp -/- mice display embryonic lethality, while gC1qR is excessively up-regulated in cancer. Although gC1qR encompasses an N-terminal mitochondrial leader it is also located in other cellular compartments. Hence, we aimed to investigate mechanisms regulating gC1qR cellular localization and its impact on tumor cell metabolism. We identified two caspase-1 cleavage sites in human gC1qR. GC1qR cleavage by active caspase-1 was unraveled as a cellular mechanism that prevents mitochondrial gC1qR import, thereby enabling aerobic glycolysis and enhanced cell proliferation. Ex vivo, tumor grading correlated with non-mitochondrial-located gC1qR as well as with caspase-1 activation in colorectal carcinoma patients. Together, active caspase-1 cleaves gC1qR and boosts aerobic glycolysis in tumor cells.
Collapse
Affiliation(s)
- Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annika Raschdorf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maren Hicken
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Heidi Schlichting
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Franziska Fetzer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Ann-Kathrin Brethack
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Lübeck, Germany.,Pathology of the Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Claudia Kemper
- Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany.,1st Department of Medicine, Division of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
12
|
Peerschke E, Stier K, Li X, Kandov E, de Stanchina E, Chang Q, Xiong Y, Manova-Todorova K, Fan N, Barlas A, Ghebrehiwet B, Adusumilli PS. gC1qR/HABP1/p32 Is a Potential New Therapeutic Target Against Mesothelioma. Front Oncol 2020; 10:1413. [PMID: 32903438 PMCID: PMC7435067 DOI: 10.3389/fonc.2020.01413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
Mesothelioma is an aggressive cancer of the serous membranes with poor prognosis despite combination therapy consisting of surgery, radiotherapy, and platinum-based chemotherapy. Targeted therapies, including immunotherapies, have reported limited success, suggesting the need for additional therapeutic targets. This study investigates a potential new therapeutic target, gC1qR/HABP1/p32 (gC1qR), which is overexpressed in all morphologic subtypes of mesothelioma. gC1qR is a complement receptor that is associated with several cellular functions, including cell proliferation and angiogenesis. In vitro and in vivo experiments were conducted to test the hypothesis that targeting gC1qR with a specific gC1qR monoclonal antibody 60.11 reduces mesothelioma tumor growth, using the biphasic mesothelioma cell line MSTO-211H (MSTO). In vitro studies demonstrate cell surface and extracellular gC1qR expression by MSTO cells, and a modest 25.3 ± 1.8% (n = 4) reduction in cell proliferation by the gC1qR blocking 60.11 antibody. This inhibition was specific for targeting the C1q binding domain of gC1qR at aa 76–93, as a separate monoclonal antibody 74.5.2, directed against amino acids 204–218, had no discernable effect. In vivo studies, using a murine orthotopic xenotransplant model, demonstrated an even greater reduction in MSTO tumor growth (50% inhibition) in mice treated with the 60.11 antibody compared to controls. Immunohistochemical studies of resected tumors revealed increased cellular apoptosis by caspase 3 and TUNEL staining, in 60.11 treated tumors compared to controls, as well as impaired angiogenesis by decreased CD31 staining. Taken together, these data identify gC1qR as a potential new therapeutic target against mesothelioma with both antiproliferative and antiangiogenic properties.
Collapse
Affiliation(s)
- Ellinor Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kenneth Stier
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Xiaoyu Li
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Evelyn Kandov
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Elisa de Stanchina
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Qing Chang
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States
| | - Yuquan Xiong
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ning Fan
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Afsar Barlas
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- Departments of Medicine and Pathology, Stony Brook University, Stony Brook, New York, NY, United States
| | - Prasad S Adusumilli
- Department of Surgery, Thoracic Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
13
|
Xu J, Sun Y, Jiang J, Xu Z, Li J, Xu T, Liu P. Globular C1q Receptor (gC1qR/p32/HABP1) Suppresses the Tumor-Inhibiting Role of C1q and Promotes Tumor Proliferation in 1q21-Amplified Multiple Myeloma. Front Immunol 2020; 11:1292. [PMID: 32760394 PMCID: PMC7372013 DOI: 10.3389/fimmu.2020.01292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Immunodeficiencies are widely becoming known as important features of multiple myeloma (MM) and may promote the proliferation of malignant cells as well as confer resistance to therapy. Few studies focus on the immunomodulatory effects of the complement system on MM. This study aims to explore the role of C1q in MM patients. Plasma C1q was found to be significantly reduced in MM patients, and the amount of C1q deposited around the CD138+ cells in bone marrow (BM) biopsy sections was observed to be much higher, especially in the subgroup with 1q21 amplification (Amp1q21). CD138+ cells expressed higher levels of C1q receptors (C1qRs) than CD138− cells. Patients with Amp1q21 expressed higher levels of globular C1qR (gC1qR), whereas patients without Amp21 expressed higher levels of collagen tail C1qR (cC1qR). Additionally, gC1qR was noted to suppress the MM-inhibiting role of C1q in H929, U266, and MM1S. gC1qR interacts with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which also suppressed the function of C1q and regulated CDC28 protein kinase regulatory subunit 1B (CKS1B) mRNA. In summary, gC1qR suppressed the MM-inhibiting role of C1q and regulated CKS1B mRNA in promoting tumor proliferation via IGF2BP3 in 1q21-amplified MM. Our findings provide novel evidence on how MM cells evade the immune system and promote survival as well as suggest possible novel targets for future therapies of MM.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifeng Sun
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jifeng Jiang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianhong Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
p32/C1QBP regulates OMA1-dependent proteolytic processing of OPA1 to maintain mitochondrial connectivity related to mitochondrial dysfunction and apoptosis. Sci Rep 2020; 10:10618. [PMID: 32606429 PMCID: PMC7327069 DOI: 10.1038/s41598-020-67457-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission in response to various physiological and stress stimuli, which play key roles in diverse mitochondrial functions such as energy metabolism, intracellular signaling, and apoptosis. OPA1, a mitochondrial dynamin-like GTPase, is responsible for the inner membrane fusion of mitochondria, and the function of OPA1 is regulated by proteolytic cleavage in response to various metabolic stresses. Growing evidences highlighted the importance of mitochondrial adaptation in response to metabolic stimuli. Here, we demonstrated the role of p32/C1QBP in mitochondrial morphology by regulating OMA1-dependent proteolytic processing of OPA1. Genetic ablation of p32/C1QBP activates OMA1, cleaves OPA1, and leads mitochondrial fragmentation and swelling. The loss of p32/C1QBP decreased mitochondrial respiration and lipid utilization, sensitized cells to mitochondrial stress, and triggered a metabolic shift from oxidative phosphorylation to glycolysis, which were correlated with apoptosis in cancer cells and the inhibition of 3D-spheroid formation. These results suggest a unique regulation of cell physiology by mitochondria and provide a basis for a new therapeutic strategy for cancer.
Collapse
|
15
|
Hernández JE, González-Montiel A, Allos-Villalva JCC, Cantú D, Barquet S, Olivares-Mundo A, Herrera LA, Prada D. Prognostic molecular biomarkers in endometrial cancer: A review. ACTA ACUST UNITED AC 2019; 7:17-28. [PMID: 34322276 PMCID: PMC8315102 DOI: 10.14312/2052-4994.2019-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Endometrial cancer (EC) is the fourth most common malignancy in women worldwide and the most common gynecological cancer in developed countries. The endometrioid subtype has an excellent prognosis with conventional treatment; however, recurrence reduces overall survival. Objective: Describe the most relevant evidence regarding selected potential molecular biomarkers that may predict overall survival (OS), relapse-free survival (RFS), and cancer-specific survival (CSS) in EC. Methods: An exhaustive search was performed in PUBMED with the search terms endometrial cancer, molecular biomarker, and survival. We selected original articles written in English about endometrial cancer, molecular biomarkers, and that included survival analysis published between January 2000 and December 2016. Results: Several molecular prognostic biomarkers have been studied in terms of survival and therapeutic response in women with endometrial cancer; hormone receptors, microRNAs, and other molecules have emerged as potentially useful biomarkers, including HER2, p21, HE4, PTEN, p27, ANCCA, and ANXA2. Conclusions: The use of biomarkers in the assessment of OS, RFS, and CSS requires large trials to expand our understanding of endometrial carcinogenesis. Several molecular markers are significantly associated with a high tumor grade and advanced clinical stage in EC and, therefore, could have additive effects when combined.
Collapse
Affiliation(s)
- J Edgardo Hernández
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Ailyn González-Montiel
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Jesús C Ceb Allos-Villalva
- Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| | - David Cantú
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Salim Barquet
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Anny Olivares-Mundo
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Luis A Herrera
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Diddier Prada
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080.,Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| |
Collapse
|
16
|
Li X, Eguchi T, Aly RG, Chintala NK, Tan KS, Zauderer MG, Dembitzer FR, Beasley MB, Ghebrehiwet B, Adusumilli PS, Peerschke EIB. Globular C1q Receptor (gC1qR/p32/HABP1) Is Overexpressed in Malignant Pleural Mesothelioma and Is Associated With Increased Survival in Surgical Patients Treated With Chemotherapy. Front Oncol 2019; 9:1042. [PMID: 31681580 PMCID: PMC6799080 DOI: 10.3389/fonc.2019.01042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
Introduction: Globular C1q receptor (gC1qR/p32/HABP1) is overexpressed in a variety of cancers, particularly adenocarcinomas. This study investigated gC1qR expression in malignant pleural mesothelioma (MPM) and its pathophysiologic correlates in a surgical patient cohort. Methods: Tissue microarrays comprising 6 tumoral and 3 stromal cores from 265 patients with MPM (216 epithelioid, 26 biphasic, and 23 sarcomatoid; 1989–2010) were investigated by immunohistochemistry for gC1qR expression (intensity and distribution by H-score, range 0–300), and immune cell infiltration. Overall survival (OS) was analyzed by the Kaplan-Meier method (high vs. low gC1qR expression delineated by median score) in the whole cohort and by neoadjuvant chemotherapy (NAC) status. Multivariable Cox analysis included stage, chemotherapy, and immune cell infiltration. Results: gC1qR was overexpressed in all histological types of MPMs (263/265, 99.2%) compared to normal pleura. In epithelioid MPM, high gC1qR expression was associated with better OS (median 25 vs. 11 months; p = 0.020) among NAC patients, and among patients without NAC (No-NAC) but who received post-operative chemotherapy (median OS 38 vs. 19 months; p = 0.0007). In multivariable analysis, high gC1qR expression was an independent factor for improved OS in patients treated with NAC. In the No-NAC cohort, high gC1qR expression correlated with lower tumor stage. Moreover, the influence of Ki67 and CD4 T-cell infiltration on OS were more pronounced among patients with high gC1qR expression. Conclusion: This is the first description of gC1qR expression in MPM. The data identify gC1qR as a potential new prognostic factor in patients treated with surgery and chemotherapy.
Collapse
Affiliation(s)
- Xiaoyu Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Takashi Eguchi
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Division of Thoracic Surgery, Department of Surgery, Shinshu University, Matsumoto, Japan
| | - Rania G Aly
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Francine R Dembitzer
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, United States
| | - Mary Beth Beasley
- Department of Pathology, Mount Sinai School of Medicine, New York, NY, United States
| | - Berhane Ghebrehiwet
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I B Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
17
|
Systematic Multiomics Analysis of Alterations in C1QBP mRNA Expression and Relevance for Clinical Outcomes in Cancers. J Clin Med 2019; 8:jcm8040513. [PMID: 30991713 PMCID: PMC6517981 DOI: 10.3390/jcm8040513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022] Open
Abstract
C1QBP (Complement Component 1 Q Subcomponent-Binding Protein), a multicompartmental protein, participates in various cellular processes, including mRNA splicing, ribosome biogenesis, protein synthesis in mitochondria, apoptosis, transcriptional regulation, and infection processes of viruses. The correlation of C1QBP expression with patient survival and molecular function of C1QBP in relation to cancer progression has not been comprehensively studied. Therefore, we sought to systematically investigate the expression of C1QBP to evaluate the change of C1QBP expression and the relationship with patient survival and affected pathways in breast, lung, colon, and bladder cancers as well as lymphoma. Relative expression levels of C1QBP were analyzed using the Oncomine, Gene Expression Across Normal and Tumor Tissue (GENT), and The Cancer Genome Atlas (TCGA) databases. Mutations and copy number alterations in C1QBP were also analyzed using cBioPortal, and subsequently, the relationship between C1QBP expression and survival probability of cancer patients was explored using the PrognoScan database and the R2: Kaplan Meier Scanner. Additionally, the relative expression of C1QBP in other cancers, and correlation of C1QBP expression with patient survival were investigated. Gene ontology and pathway analysis of commonly differentially coexpressed genes with C1QBP in breast, lung, colon, and bladder cancers as well as lymphoma revealed the C1QBP-correlated pathways in these cancers. This data-driven study demonstrates the correlation of C1QBP expression with patient survival and identifies possible C1QBP-involved pathways, which may serve as targets of a novel therapeutic modality for various human cancers.
Collapse
|
18
|
Xie ZB, Yao L, Jin C, Zhang YF, Fu DL. High cytoplasm HABP1 expression as a predictor of poor survival and late tumor stage in pancreatic ductal adenocarcinoma patients. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2019; 45:207-212. [PMID: 30389300 DOI: 10.1016/j.ejso.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hyaluronan-binding protein 1 (HABP1) overexpression has been confirmed in different malignancies and found to be strongly associated with tumor development and progression. The aim of the present study was to explore the impact of HABP1 in pancreatic ductal adenocarcinoma (PDAC) patients. METHOD HABP1 expression was evaluated in 89 PDAC specimens. RESULTS The expression of HABP1 was significantly higher in tumor tissues than that in adjacent normal tissues. High nucleus HABP1 expression and high cytoplasm HABP1 expression were both detected in PDAC tissues. Overall survival analysis by optical density showed that the mean survival was similar between patients with low and high optical density values of HABP1 expression (P = 0.312). The similar result was also found between patients with low-moderate or high nucleus HABP1 expression (P = 0.275). However, the mean survival was significantly poorer in patients with cytoplasm HABP1 overexpression (P < 0.001). High cytoplasm HABP1 expression was strongly correlated with late tumor stages, arterial involvement, lymph node metastasis and carbohydrate antigen 19-9 levels. CONCLUSION High cytoplasm HABP1 expression may prove to be a predictor of poor survival and late tumor stage in PDAC patients. HABP1 could serve as a promising biomarker to identify subsets of PDAC patients with high malignant clinical behavior.
Collapse
Affiliation(s)
- Zhi-Bo Xie
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi-Fan Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.
| | - De-Liang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
19
|
Lavaud P, Fedida B, Canlorbe G, Bendifallah S, Darai E, Thomassin-Naggara I. Preoperative MR imaging for ESMO-ESGO-ESTRO classification of endometrial cancer. Diagn Interv Imaging 2018; 99:387-396. [DOI: 10.1016/j.diii.2018.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
|
20
|
Kim BC, Hwang HJ, An HT, Lee H, Park JS, Hong J, Ko J, Kim C, Lee JS, Ko YG. Antibody neutralization of cell-surface gC1qR/HABP1/SF2-p32 prevents lamellipodia formation and tumorigenesis. Oncotarget 2018; 7:49972-49985. [PMID: 27363031 PMCID: PMC5226562 DOI: 10.18632/oncotarget.10267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022] Open
Abstract
We previously demonstrated that cell-surface gC1qR is a key regulator of lamellipodia formation and cancer metastasis. Here, we screened a monoclonal mouse antibody against gC1qR to prevent cell migration by neutralizing cell-surface gC1qR. The anti-gC1qR antibody prevented growth factor-stimulated lamellipodia formation, cell migration and focal adhesion kinase activation by inactivating receptor tyrosine kinases (RTKs) in various cancer cells such as A549, MDA-MB-231, MCF7 and HeLa cells. The antibody neutralization of cell-surface gC1qR also inhibited angiogenesis because the anti-gC1qR antibody prevented growth factor-stimulated RTK activation, lamellipodia formation, cell migration and tube formation in HUVEC. In addition, we found that A549 tumorigenesis was reduced in a xenograft mouse model by following the administration of the anti-gC1qR antibody. With these data, we can conclude that the antibody neutralization of cell-surface gC1qR could be a good therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Beom-Chan Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyun-Jung Hwang
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Hyoung-Tae An
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hyun Lee
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jun-Sub Park
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jin Hong
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Jesang Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Chungho Kim
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Tunneling Nanotube Research Center, Korea University, Seoul, 02841, Korea.,Division of Life Sciences, Korea University, Seoul, 02841, Korea
| |
Collapse
|
21
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
22
|
Yenugonda V, Nomura N, Kouznetsova V, Tsigelny I, Fogal V, Nurmemmedov E, Kesari S, Babic I. A novel small molecule inhibitor of p32 mitochondrial protein overexpressed in glioma. J Transl Med 2017; 15:210. [PMID: 29047383 PMCID: PMC5648515 DOI: 10.1186/s12967-017-1312-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The mitochondrial protein p32 is a validated therapeutic target of cancer overexpressed in glioma. Therapeutic targeting of p32 with monoclonal antibody or p32-binding LyP-1 tumor-homing peptide can limit tumor growth. However, these agents do not specifically target mitochondrial-localized p32 and would not readily cross the blood-brain barrier to target p32-overexpressing gliomas. Identifying small molecule inhibitors of p32 overexpressed in cancer is a more rational therapeutic strategy. Thus, in this study we employed a pharmacophore modeling strategy to identify small molecules that could bind and inhibit mitochondrial p32. METHODS A pharmacophore model of C1q and LyP-1 peptide association with p32 was used to screen a virtual compound library. A primary screening assay for inhibitors of p32 was developed to identify compounds that could rescue p32-dependent glutamine-addicted glioma cells from glutamine withdrawal. Inhibitors from this screen were analyzed for direct binding to p32 by fluorescence polarization assay and protein thermal shift. Affect of the p32 inhibitor on glioma cell proliferation was assessed by Alamar Blue assay, and affect on metabolism was examined by measuring lactate secretion. RESULTS Identification of a hit compound (M36) validates the pharmacophore model. M36 binds directly to p32 and inhibits LyP-1 tumor homing peptide association with p32 in vitro. M36 effectively inhibits the growth of p32 overexpressing glioma cells, and sensitizes the cells to glucose depletion. CONCLUSIONS This study demonstrates a novel screening strategy to identify potential inhibitors of mitochondrial p32 protein overexpressed in glioma. High throughput screening employing this strategy has potential to identify highly selective, potent, brain-penetrant small molecules amenable for further drug development.
Collapse
Affiliation(s)
- Venkata Yenugonda
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Natsuko Nomura
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | - Igor Tsigelny
- University of California San Diego, La Jolla, CA, USA
| | | | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| | - Ivan Babic
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
23
|
Huang S, Zhu L, Cao Y, Li L, Xie Y, Deng J, Xiong J. Significant association of YAP1 and HSPC111 proteins with poor prognosis in Chinese gastric cancer patients. Oncotarget 2017; 8:80303-80314. [PMID: 29113304 PMCID: PMC5655199 DOI: 10.18632/oncotarget.17932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022] Open
Abstract
Hippo-YAP1 is a tumor-suppressor signaling pathway that inhibits cell proliferation and accelerates apoptosis. However, the role of YAP1 in gastric cancer (GC) is still in dispute. Ribosomal biogenesis is closely correlated with human malignancies. HBV pre-S2 trans-regulated protein 3 (HSPC111) is a portion of an RNA-dependent complex and plays a crucial role in ribosome biosynthesis. Nevertheless, little is known about the expression and function of this factor in GC. In the present study, we evaluated the significance of YAP1 together with HSPC111 in gastric cancer. According to The Cancer Genome Atlas database, high YAP1 mRNA expression was significantly associated with poor prognosis of GC patients, and dramatically increased mRNA levels of HSPC111 are observed in GC tissues. Consistent with these findings, we detected increased expression of both YAP1 and HSPC111 in GC cell lines and clinical samples. Notably, nuclear expression of YAP1 was positively correlated with clinical stage (P = 0.041), tumor size (P = 0.023), and lymph node metastasis (P = 0.007), while HSPC111 expression was correlated with lymph node metastasis (P = 0.014). Our analyses also detected a correlation between HSPC111 expression and nuclear and cytoplasmic YAP1 in clinical samples (nuclear: r = 0.2615, P = 0.004; cytoplasm: r = -0.3721, P < 0.001) and cell lines. Finally, we showed that patients who were HSPC111- and nuclear YAP1-positive were associated with the worst prognosis (34.5 ± 4.8 months, p = 0.001), and that nuclear expression of YAP1 might act as an independent prognostic factor for GC patients.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Lingling Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yongtao Xie
- Medical College of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| |
Collapse
|
24
|
Jiang Y, Wu H, Liu J, Chen Y, Xie J, Zhao Y, Pang D. Increased breast cancer risk with HABP1/p32/gC1qR genetic polymorphism rs2285747 and its upregulation in northern Chinese women. Oncotarget 2017; 8:13932-13941. [PMID: 28108744 PMCID: PMC5355151 DOI: 10.18632/oncotarget.14737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Object Hyaluronic acid binding protein 1 (HABP1/p32/gC1qR) is overexpressed in breast cancer. However, it is unknown whether HABP1 gene polymorphisms affect breast cancer risk. This study aims to evaluate the potential association of single nucleotide polymorphisms (SNPs) of HABP1 with breast cancer in northern Chinese women. Results The minor allele of rs2285747 was strongly associated with breast cancer with OR of 1.553 (95% CI = 1.251–1.927). SNP rs2285747 was also associated with high HABP1 protein expression under the co-dominant and dominant model (p = 0.005, p = 0.019, respectively). For rs2472614, the patients with CG and GG were more likely to have HER2 negative tumors compared to CC (p = 0.015). For rs3786054, the patients with AG and GG were more likely to have HER2 and P53 negative breast cancer compared to AA (p = 0.024, p = 0.064, receptively). Materials and Methods Seven SNPs were analyzed in 505 breast cancer patients and 505 controls using SNaPshot method. The associations between SNPs and breast cancer were examined by logistic regression. The associations of SNPs with HABP1 protein expression and disease characteristics were examined by chi-square test. Conclusions SNP rs2285747 of HABP1 increased breast cancer risk and elevated its protein expression in northern Chinese women.
Collapse
Affiliation(s)
- Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jing Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanbo Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingjing Xie
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College of Harbin Medical University, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
25
|
Saha P, Kaul R, Datta K. Human gene encoding hyaluronan binding protein 1 (HABP1/p32/gC1qR): involvement in signaling cascade. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Hyaluronic acid binding protein 1 overexpression is an indicator for disease-free survival in cervical cancer. Int J Clin Oncol 2016; 22:347-352. [PMID: 28039537 DOI: 10.1007/s10147-016-1077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
BACKGOUND Hyaluronic acid binding protein 1 (HABP1) is reported to overexpress in various cancer tissues and may therefore contribute to oncogenesis. However, the status of HABP1 expression in cervical cancer (CC) remains unknown. The aim of this study was to investigate the role of HABP1 and its relationship with clinical characteristics in patients with CC. METHODS Immunohistochemistry was used to explore the expression of HABP1 in 30 cervical intra-epithelial neoplasia (CIN) and 118 CC specimens compared to 10 normal cervical specimens. RESULTS HABP1 expression was found to be positively higher in CC than in CIN2/3 cases (P = 0.020). Moreover, clinicopathological analysis showed that HABP1 overexpression was associated with advanced FIGO stage (P = 0.001), poor histologic grade (P = 0.013), large tumor size (P = 0.025), LVSI (P = 0.024), deep stromal infiltration (P = 0.001), and lymph node metastasis (P = 0.023). Multivariate analysis suggested that HABP1 overexpression was an independent factor for disease-free survival (DFS) (hazard ratio 3.082; 95% confidence interval 1.372-7.501; P = 0.007). CONCLUSIONS The present data provide evidence that HABP1 overexpression predicts CC with high-risk factors and may therefore serve as a new molecular marker for the prediction of DFS in these patients.
Collapse
|
27
|
Gao H, Yao Q, Lan X, Li S, Wu J, Zeng G, Xue Y. Elevated HABP1 protein expression correlates with progression and poor survival in patients with gastric cancer. Onco Targets Ther 2016; 9:6711-6718. [PMID: 27826197 PMCID: PMC5096779 DOI: 10.2147/ott.s114756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hyaluronic acid-binding protein 1 (HABP1/gC1qR/p32) has been recently implicated in oncogenesis and cancer progression in various malignancies; however, its clinical role in gastric cancer (GC) is still unclear. PATIENTS AND METHODS First, HABP1 expression was determined by Western blot analysis and immunohistochemistry. Then, we evaluated the expression of HABP1 and its clinical significance in tumor tissues from 181 patients with GC. RESULTS Expression of HABP1 protein in GC tissues was noticeably higher than that in adjacent nonneoplastic tissues (P=0.018). Increased HABP1 expression was significantly associated with tumor, node, and metastasis (TNM) stage (P=0.006), depth of invasion (P=0.001), lymph node metastasis (P=0.001), liver metastasis (P=0.024), and peritoneum metastasis (P=0.009). Patients with high expression of HABP1 had poor overall survival rate (P<0.001). In addition, histologic grade (P=0.017), TNM stage (P<0.001), Borrmann grouping (P<0.001), depth of invasion (P<0.001), lymph node metastasis (P<0.001), liver metastasis (P=0.010), and tumor size (P<0.001) were independent prognostic factors for overall survival. Multivariate Cox regression analysis revealed that HABP1 (P=0.004), histologic grade (P=0.047), TNM stage (P<0.001), Borrmann grouping (P<0.001), and liver metastasis (P=0.038) were independent factors for overall survival in patients with GC. CONCLUSION These findings demonstrated that HABP1 was an indicator for GC progression and poor survival, which highlighted its potential role as a therapeutic target for GCs.
Collapse
Affiliation(s)
| | - Qiang Yao
- Department of Gastroenterologic Surgery
| | | | - Sen Li
- Department of Gastroenterologic Surgery
| | - Junlong Wu
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Guangchun Zeng
- Department of Pathology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, People's Republic of China
| | | |
Collapse
|
28
|
Elevated expression of HABP1 is a novel prognostic indicator in triple-negative breast cancers. Tumour Biol 2015; 36:4793-9. [DOI: 10.1007/s13277-015-3131-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
|